Advertisement

Structure, stability, and electronic properties of niobium-germanium and tantalum-germanium clusters

  • C. Siouani
  • S. MahtoutEmail author
  • F. RabilloudEmail author
Original Paper
  • 58 Downloads

Abstract

The structural, electronic and magnetic properties of niobium- and tantalum-doped germanium clusters MGen (M = Nb, Ta and n = 1–19) were investigated by first principles calculations within the density functional theory (DFT) approach. Growth pattern behaviors, stabilities, and electronic properties are presented and discussed. Endohedral cage-like structures in which the metal atom is encapsulated are favored for n ≥ 10. The doping metal atom contributes largely to strengthening the stability of the germanium cage-like structures, with binding energy ordered as follows BE(Gen + 1) < BE (VGen) < BE(NbGen) < BE(TaGen). Our results highlight the relative high stability of NbGe15, TaGe15 and VGe14.

Graphical abstract

Structure, stability, and electronic properties of niobium-germanium and tantalum-germanium clusters

Keywords

Clusters Germanium clusters Metal-doped germanium clusters DFT Ab initio calculations 

Notes

Acknowledgments

F.R. thanks the GENCI-IDRIS (Grant A0050807662) center for generous allocation of computational time.

References

  1. 1.
    Sattler KD (ed) (2017) Handbook of nanophysics clusters and fullerenes. CRC, Boca RatonGoogle Scholar
  2. 2.
    Shvartsburg AA, Liu B, Lu Z-Y, Wang C-Z, Jarrold MF, Ho K-M (1999) Structures of germanium clusters: where the growth patterns of silicon and germanium clusters diverge. Phys Rev Lett 83:2167CrossRefGoogle Scholar
  3. 3.
    Yoshida S, Fuke K (1999) Photoionization studies of germanium and tin clusters in the energy region of 5.0-8.8 eV: ionization potentials for Gen (n = 2-57) and Snn (n = 2-41). J Chem Phys 111:3880CrossRefGoogle Scholar
  4. 4.
    Bals S, Van Aert S, Romero CP, Lauwaet K, Van Bael MJ, Schoeters B, Partoens B, Yücelen E, Lievens P, Van Tendeloo G (2012) Atomic scale dynamics of ultrasmall germanium clusters. Nat Commun 3:897CrossRefGoogle Scholar
  5. 5.
    Singh AK, Kumar V, Kawazoe Y (2005) Thorium encapsulated caged clusters of germanium: Th@Gen, n = 16, 18, and 20. J Phys Chem B 109:15187–15189CrossRefGoogle Scholar
  6. 6.
    Wang J, Han JG (2005) A computational investigation of copper-doped germanium and germanium clusters by the density-functional theory. J Chem Phys 123:244303CrossRefGoogle Scholar
  7. 7.
    Wang J, Han JG (2006) A theoretical study on growth patterns of Ni-doped germanium clusters. J Phys Chem B 110:7820–7827CrossRefGoogle Scholar
  8. 8.
    Wang J, Han JG (2006) Geometries and electronic properties of the tungsten-doped germanium clusters: WGen (n = 1-17). J Phys Chem A 110:12670–12677CrossRefGoogle Scholar
  9. 9.
    Hou XJ, Gopakumar G, Lievens P, Nguyen MT (2007) Chromium-doped germanium clusters CrGen (n = 1-5): geometry, electronic structure, and topology of chemical bonding. J Phys Chem A 111:13544–13553CrossRefGoogle Scholar
  10. 10.
    Wielgus P, Roszak S, Majumdar D, Saloni J, Leszczynski J (2008) Theoretical studies on the bonding and thermodynamic properties of GenSim (m + n = 5) clusters: the precursors of germanium/silicon nanomaterials. J Chem Phys 128:144305CrossRefGoogle Scholar
  11. 11.
    Jing D, Tian F, Wang Y (2008) No quenching of magnetic moment for the GenCo (n = 1-13) clusters: first principles calculations. J Chem Phys 128:124319CrossRefGoogle Scholar
  12. 12.
    Wang J, Han JG (2008) Geometries, stabilities, and vibrational properties of bimetallic Mo2-doped Gen (n = 9-15) clusters: a density functional investigation. J Phys Chem A 112:3224–3230CrossRefGoogle Scholar
  13. 13.
    Zhao WJ, Wang YX (2008) Geometries, stabilities, and electronic properties of FeGen (n = 9-16) clusters: density-functional theory investigations. Chem Phys 352:291–296CrossRefGoogle Scholar
  14. 14.
    Zdetsis AD (2009) Silicon-bismuth and germanium-bismuth clusters of high stability. J Phys Chem A 113:12079–12087CrossRefGoogle Scholar
  15. 15.
    Sosa-Hernandez EM, Alvarado-Leyva PG (2009) Magnetic properties of stable structures of small binary FenGem (n + m ≤ 4) clusters. Phys E 42:17–21CrossRefGoogle Scholar
  16. 16.
    Zhao WJ, Wang YX (2009) Geometries, stabilities, and magnetic properties of MnGen (n = 2-16) clusters: density-functional theory investigations. THEOCHEM J Mol Struct 901:18–23CrossRefGoogle Scholar
  17. 17.
    Bandyopadhyay D, Kaur P, Sen P (2010) New insights into applicability of Electron-counting rules in transition metal encapsulating Ge cage clusters. J Phys Chem A 114:12986–12991CrossRefGoogle Scholar
  18. 18.
    Bandyopadhyay D, Sen P (2010) Density functional investigation of structure and stability of Gen and GenNi (n = 1-20) clusters: validity of the Electron counting rule. J Phys Chem A 114:1835–1842CrossRefGoogle Scholar
  19. 19.
    Bandyopadhyay D (2012) Architectures, electronic structures, and stabilities of cu-doped Gen clusters: density functional modeling. J Mol Model 18:3887–3902CrossRefGoogle Scholar
  20. 20.
    Kapila N, Jindal VK, Sharma H (2011) Structural, electronic and magnetic properties of Mn, co, Ni in Gen for (n = 1-13). Phys B 406:4612–4619CrossRefGoogle Scholar
  21. 21.
    Kapila N, Garg I, Jindal VK, Sharma H (2012) First principle investigation into structural growth and magnetic properties in GenCr clusters for n = 1-13. J Magn Magn Mater 324:2885–2893CrossRefGoogle Scholar
  22. 22.
    Kumar M, Bhattacharyya N, Bandyopadhyay D (2012) Architecture, electronic structure and stability of TM@Gen (TM = Ti, Zr and Hf; n = 1-20) clusters: a density functional modeling. J Mol Model 18:405–418CrossRefGoogle Scholar
  23. 23.
    Samanta PN, Das KK (2012) Electronic structure, bonding, and properties of SnmGen (m + n ≤ 5) clusters: a DFT study. Comput Theor Chem 980:123–132CrossRefGoogle Scholar
  24. 24.
    Shi S, Liu Y, Zhang C, Deng B, Jiang G (2015) A computational investigation of aluminum-doped germanium clusters by density functional theory study. Comput Theor Chem 1054:8–15CrossRefGoogle Scholar
  25. 25.
    Deng XJ, Kong XY, Xu XL, Xu HG, Zheng WJ (2014) Structural and magnetic properties of CoGen (n = 2-11) clusters: photoelectron spectroscopy and density functional calculations. Chem Phys Chem 15:3987–3993CrossRefGoogle Scholar
  26. 26.
    Deng X-J, Kong X-Y, Xu H-G, Xu X-L, Feng G, Zheng W-J (2015) Photoelectron spectroscopy and density functional calculations of VGen (n = 3-12) clusters. J Phys Chem C 119:11048–11055CrossRefGoogle Scholar
  27. 27.
    Jin Y, Tian Y, Kuang X, Lu C, Cabellos JL, Mondal S, Merino G (2016) Structural and electronic properties of ruthenium-doped germanium clusters. J Phys Chem C 120:8399–8404CrossRefGoogle Scholar
  28. 28.
    Mahtout S, Tariket Y (2016) Electronic and magnetic properties of CrGen (15 ≤ n ≤ 29) clusters: a DFT study. Chem Phys 472:270–277CrossRefGoogle Scholar
  29. 29.
    Jaiswal S, Kumar V (2016) Growth behavior and electronic structure of neutral and anion ZrGen (n = 1-21) clusters. Comput Theor Chem 1075:87–97CrossRefGoogle Scholar
  30. 30.
    Lu S-J, Hu L-R, Xu X-L, Xu H-G, Chen H, Zheng W-J (2016) Transition from exohedral to endohedral structures of AuGen (n = 2-12) clusters: photoelectron spectroscopy and ab initio calculations. Phys Chem Chem Phys 18:20321CrossRefGoogle Scholar
  31. 31.
    Siouani C, Mahtout S, Safer S, Rabilloud F (2017) Structure, stability, and electronic and magnetic properties of VGen (n = 1-19) clusters. J Phys Chem A 121:3540–3554CrossRefGoogle Scholar
  32. 32.
    Mahtout S, Siouani C, Safer S, Rabilloud F (2018) Growth behavior and electronic structure of Noble metal-doped germanium clusters. J Phys Chem A 122:662–677CrossRefGoogle Scholar
  33. 33.
    Tran VT, Nguyen MT, Tran QT (2017) A computational investigation of the geometrical and electronic structures of VGen −/0 (n = 1-4) clusters by density functional theory and multiconfigurational CASSCF/CASPT2 method. J Phys Chem A 121:7787–7796CrossRefGoogle Scholar
  34. 34.
    Tran VT, Tran QT (2018) The electronic structures of CoGen −/0 (n = 1-3) clusters from multiconfigurational CASSCF/CASPT2 and RASSCF/RASPT2 calculations. J Phys Chem A 122:6407–6415CrossRefGoogle Scholar
  35. 35.
    Tran VT, Tran QT (2018) Spin state energetics of VGen −/0 (n = 5-7) clusters and new assignments of the anion photoelectron spectra. J Comput Chem 39:2103–2109CrossRefGoogle Scholar
  36. 36.
    Liang XQ, Deng XJ, Lu SJ, Huang X, Zhao J, Xu HG, Zheng W-J, Zeng XC (2017) Probing structural, electronic and magnetic properties of Iron-doped semiconductor clusters Fe2Gen −/0 (n = 3-12) via joint photoelectron spectroscopy and density-functional study. J Phys Chem C 121:7037–7046CrossRefGoogle Scholar
  37. 37.
    Liang XQ, Kong X, Lu SJ, Huang Y, Zhao J, Xu HG, Zheng W, Zeng XC (2018) Structural evolution and magnetic properties of anionic clusters Cr2Gen (n = 3-14): photoelectron spectroscopy and density functional theory computation. J Phys Condens Matter 30:335501CrossRefGoogle Scholar
  38. 38.
    Fioressi SE, Bacelo DE (2017) Structures and energetics of BenGen (n = 1-5) and Be2nGen (n = 1–4) clusters. Mol Phys 117:1502–1513CrossRefGoogle Scholar
  39. 39.
    Borshch NA, Kurganskii SI (2018) Atomic structure and electronic properties of anionic germanium–zirconium clusters. Inorg Mater 54:1–7CrossRefGoogle Scholar
  40. 40.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  41. 41.
    Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779CrossRefGoogle Scholar
  42. 42.
    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B: Condens Matter Mater Phys 43:1993–2006CrossRefGoogle Scholar
  43. 43.
    Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425–1428CrossRefGoogle Scholar
  44. 44.
    Gadiyak GV, Morokov YN, Mukhachev AG, Chernov SV (1982) Electron density functional method for molecular system calculations. J Struct Chem 22:670–674CrossRefGoogle Scholar
  45. 45.
    Kingcade JE, Nagarathna-Naik HM, Shim I, Gingerich KA (1986) Electronic structure and bonding of the molecule Ge2 from all-electron ab initio calculations and equilibrium measurements. J Phys Chem 90:2830–2834CrossRefGoogle Scholar
  46. 46.
    Frisch MJ et al (2013) Gaussian09, Revision D.01. Gaussian Inc., WallingfordGoogle Scholar
  47. 47.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, Faculté des Sciences ExactesUniversité de BejaiaBejaiaAlgeria
  2. 2.Département des Sciences de la matière, Faculté des SciencesUniversité d’Alger 1AlgerAlgeria
  3. 3.Univ Lyon, Univ Claude Bernard Lyon 1, CNRSInstitut Lumière MatièreVilleurbanneFrance

Personalised recommendations