Graphical user interface for an easy and reliable construction of input files to CP2K

  • Andreas Lynge Vishart
  • Nicolai Ree
  • Kurt V. MikkelsenEmail author
Original Paper


Creating input files to atomistic simulations and quantum chemical calculations in the CP2K software package can be a challenge. Here, we present a new graphical user interface to reduce the complexity of the work needed to run a CP2K calculation as well as the risk for making mistakes. The program is called CP2K Editor, and it provides a user-friendly interface for both new and experienced users. CP2K Editor keeps the construction of the input file simple and manageable. The input files are similarly structured, so they are easy to recognize and adjust if more advanced configurations are needed. Furthermore, we have implemented several methods for analyzing the output data, and a routine to test the best cut-off values. In our group, CP2K Editor has clearly been of great help when creating input files to the CP2K software package.


CP2K Editor GUI Interactive Software CP2K Computational chemistry Data analysis 



The authors thank Professor Benedito J. C. Cabral for fruitful discussions. K.V.M. thanks the Center for Exploitation of Solar Energy for support. N.R. thanks H.C. Ørsted Selskabet and Ørsted for financial support in terms of the Ørsted Scholarship 2018.


  1. 1.
    Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J (2014) Cp2k: atomistic simulations of condensed matter systems. Wiley Interdiscip Rev Comput Mol Sci 4(1):15–25CrossRefGoogle Scholar
  2. 2.
    Para F, Bocquet F, Nony L, Loppacher C, Fėron M, Cherioux F, Gao DZ, Canova FF, Watkins MB (2018) Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface. Nat Chem 10(11): 1112–1117CrossRefGoogle Scholar
  3. 3.
    Schütt O, VandeVondele J (2018) Machine learning adaptive basis sets for efficient large-scale density functional theory simulation. J Chem Theory Comput 14(8):4168–4175CrossRefGoogle Scholar
  4. 4.
    Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Müllen K, Fasel R (2016) On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531(7595):489–492CrossRefGoogle Scholar
  5. 5.
    Burgess JA, Malavolti L, Lanzilotto V, Mannini M, Yan S, Ninova S, Totti F, Rolf-Pissarczyk S, Cornia A, Sessoli R, Loth S (2015) Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope. Nat Commun, 6(1)Google Scholar
  6. 6.
    VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 167(2):103–128CrossRefGoogle Scholar
  7. 7.
    Hänninen V, Murdachaew G, Nathanson GM, Gerber RB, Halonen L (2018) Ab initio molecular dynamics studies of formic acid dimer colliding with liquid water. Phys Chem Chem Phys 20(36):23717–23725CrossRefGoogle Scholar
  8. 8.
    Evangelisti F, Morė R, Hodel F, Luber S, Patzke GR (2015) 3d–4f {CoII3ln(OR)4} cubanes as bio-inspired water oxidation catalysts. J Am Chem Soc 137(34):11076–11084CrossRefGoogle Scholar
  9. 9.
    Spreafico C, Schiffmann F, VandeVondele J (2014) Structure and mobility of acetic acid at the anatase (101)/acetonitrile interface. J Phys Chem C 118(12):6251–6260CrossRefGoogle Scholar
  10. 10.
    Schiffmann F, VandeVondele J, Hutter J, Urakawa A, Wirz R, Baiker A (2010) An atomistic picture of the regeneration process in dye sensitized solar cells. Proc Natl Acad Sci USA 107(11):4830–4833CrossRefGoogle Scholar
  11. 11.
    [Online]. Available:
  12. 12.
    Van Rossum G, Drake FL Jr (1995) Python tutorial. Centrum voor Wiskunde en Informatica, AmsterdamGoogle Scholar
  13. 13.
    Lundh F (1999) An introduction to tkinter,
  14. 14.
    (2018). [Online]. Available:
  15. 15.
    (2018). [Online]. Available:
  16. 16.
    Marques MA, Oliveira MJ, Burnus T (2012) Libxc: a library of exchange and correlation functionals for density functional theory. Comput Phys Commun 183(10):2272–2281CrossRefGoogle Scholar
  17. 17.
  18. 18.
    VandeVondele J, Hutter J (2003) An efficient orbital transformation method for electronic structure calculations. J Chem Phys 118(10):4365–4369CrossRefGoogle Scholar
  19. 19.
    Kaduk B, Kowalczyk T, Van Voorhis T (2011) Constrained density functional theory. Chem Rev 112 (1):321–370CrossRefGoogle Scholar
  20. 20.
    (2018). [Online]. Available:
  21. 21.
    Wu Q, Van Voorhis T (2005) Direct optimization method to study constrained systems within density-functional theory. Phys Rev A 72(2):024502CrossRefGoogle Scholar
  22. 22.
    Holmberg N, Laasonen K (2017) Efficient constrained density functional theory implementation for simulation of condensed phase electron transfer reactions. J Chem Theory Comput 13(2):587–601CrossRefGoogle Scholar
  23. 23.
    Pyykkö P, Atsumi M (2009) Molecular single-bond covalent radii for elements 1–118. Chem– Europ J 15 (1):186–197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CopenhagenCopenhagen ØDenmark

Personalised recommendations