Parameterization of prototype organic small molecules suitable for OPVs and molecular dynamics simulations: the BTT and BPT cases

  • Karl M. García-Ruiz
  • Andrés F. Marmolejo-Valencia
  • Augusto González-Navejas
  • Laura Dominguez
  • Carlos Amador-BedollaEmail author
Original Paper


Organic photovoltaics (OPV) have been theoretically studied within the usual parameters: open circuit voltage (Voc), short circuit current (Jsc), and fill factor (FF). The first two refer mostly to electronic properties, whereas the last contains all other possible contributions to cell efficiency, importantly including molecular geometrical and topological structures, both within a single molecule as amongst a system of molecules. In order to study the effects of molecular morphology of the heterostructures used in OPVs, molecular dynamic simulations (MDS) are imperative, and therefore parameterization of force fields to account for the description of planarity between aromatic rings, both intra- and inter-molecules, is of key importance. In this work, we present quantum mechanical analysis of geometry for the ground, and singlet and triplet excited states, of two simple prototypical molecules used to parametrize the corresponding force-fields. Central for this parameterization is the assignment of local charges within molecules; we studied and compared six different methods to assign atomic charges. With the parameters obtained, we performed molecular dynamics simulations of nanosystems of these molecules. Planarity effects and comparison between different methods for deriving atomic charges are investigated. These results can be applied in future MDS to interpret and characterize charge-transfer models in molecules suitable for OPV design.

Graphical Abstract

Depiction of a replicated system of BTT and BPT molecules after simulation


Organic photovoltaics Force-field parameterization Molecular dynamics Atomic charges 



The authors thank DGTIC-UNAM for computational resources provided under projects SC16-1-IG-37 and LANCAD-UNAM-DGTIC-022. A. F. M.-V. thanks CONACyT for graduate fellowship. This research was funded by CONACyT-SENER-Fondo de Sustentabilidad Energética under project 245754.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflicts of interest.

Supplementary material

894_2019_3984_MOESM1_ESM.pdf (2.4 mb)
(PDF 2.37 MB)


  1. 1.
    Alessandri R, Uusitalo J, de Vries A, Havenith R, Marrink S (2017) Bulk heterojunction morphologies with atomistic resolution from coarse-grain solvent evaporation simulations. J Am Chem Soc 139:3697–3705CrossRefGoogle Scholar
  2. 2.
    Cerezo J, Prampolini G, Cacelli I (2018) Developing accurate intramolecular force fields for conjugated systems through explicit coupling terms. Theor Chem Acc 137:1–15CrossRefGoogle Scholar
  3. 3.
    Roncali J (2007) Molecular engineering of the band gap of π conjugated systems: facing technological applications. Macromol Rapid Commun 28:1761–1775CrossRefGoogle Scholar
  4. 4.
    Ragoussi ME, Torres T (2015) New generation solar cells: concepts, trends and perspectives. Chem Commun 51:3957–3972CrossRefGoogle Scholar
  5. 5.
    Elumalai N, Uddin A (2016) Open circuit voltage of organic solar cells: an in-depth review. Energy Environ Sci 9:391–410CrossRefGoogle Scholar
  6. 6.
    Jackson N, Savoie B, Kohlstedt K, Olvera de la Cruz M, Schatz G, Chen L, Ratner M (2013) Controlling conformations of conjugated polymers and small molecules: the role of nonbonding interactions. J Am Chem Soc 135:10475–10483CrossRefGoogle Scholar
  7. 7.
    Dunning T Jr (1998) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  8. 8.
    Grant Hill J (2013) Gaussian basis set for molecular applications. Int J Quantum Chem 113:21–34CrossRefGoogle Scholar
  9. 9.
    Bader R (1995) Atoms in molecules. Oxford University Press, OxfordGoogle Scholar
  10. 10.
  11. 11.
    Mobley D, Dumont E, Chodera J, Dill K (2007) Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. J Phys Chem B 111:2242–2254CrossRefGoogle Scholar
  12. 12.
    Case D, Betz D, Cerutti D, Cheatham T III, Darden T, Duke R, Giese T, Gohlke H, Goetz A, Homeyer N, Izadi S, Janowski P, Kovalenko A, Lee T, LeGrand S, Li P, Lin C, Luchko T, Luo R, Madej B, Mermelstein D, Merz G, Monard G, Nguyen H, Nguyen H, Omelyan I, Onufriev A, Pan F, Roe D, Roitberg A, Sagui C, Simmerling C, Botello-Smith W, Swails J, Walker RC, Wang J, Wolf R, Wu X, Xiao L, Kollman PA (2016) Amber 2016. University of California, San FranciscoGoogle Scholar
  13. 13.
    Michaud-Agrawal N, Denning E, Woolf T, Beckstein O (2011) A toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32:2319–2327CrossRefGoogle Scholar
  14. 14.
    Gowers R, Linke M, Barnoud J, Reedy T, Melo M, Seyler S, Dotson D, Domanski J, Buchoux S, Kenney I, Beckstein O (2016) MDanalysis: a Python package for the rapid analysis of molecular dynamics simulations. In: Benthall S, Rostrup S (eds) Proceedings of the 15th Python in science conference. SciPy, Austin, pp 102–109Google Scholar
  15. 15.
    Coughlin J, Zhugayevych A, Bakus R II, van der Poll T, Welch G, Teat S, Bazan G, Tretiak S (2014) A combined experimental and theoretical study of conformational preferences of molecular semiconductors. J Phys Chem 118:15610–15623Google Scholar
  16. 16.
    Love J, Proctor C, Liu J, Takacs C, Sharenko A, van der Poll T, Hegger A, Bazan G, Nguyen TQ (2013) Film morphology of high efficiency solution-processed small-molecule solar cells. Adv Funct Mater 23:5019–5026CrossRefGoogle Scholar
  17. 17.
    Huang H, Chen Z, Ortiz R, Newman C, Usta H, Lou S, Youn J, Noh YY, Baeg KJ, Chen L et al (2012) Combining electron-neutral building blocks with intramolecular“conformational locks” affords stable, high-mobility p- and n-channel polymer semiconductors. J Am Chem Soc 134:10966–10973CrossRefGoogle Scholar
  18. 18.
    Shao Y, Gan Z, Epifanovsky E, Gilbert AT, Wormit M, Kussmann J, Lange AW, Behn A, Deng J, Feng X, Ghosh D, Goldey M, Horn PR, Jacobson LD, Kaliman I, Khaliullin RZ, Kuś T, Landau A, Liu J, Proynov EI, Rhee YM, Richard RM, Rohrdanz MA, Steele RP, Sundstrom EJ, III HLW, Zimmerman PM, Zuev D, Albrecht B, Alguire E, Austin B, Beran GJO, Bernard YA, Berquist E, Brandhorst K, Bravaya KB, Brown ST, Casanova D, Chang CM, Chen Y, Chien SH, Closser KD, Crittenden DL, Diedenhofen M, Jr RAD, Do H, Dutoi AD, Edgar RG, Fatehi S, Fusti-Molnar L, Ghysels A, Golubeva-Zadorozhnaya A, Gomes J, Hanson-Heine MW, Harbach PH, Hauser AW, Hohenstein EG, Holden ZC, Jagau TC, Ji H, Kaduk B, Khistyaev K, Kim J, Kim J, King RA, Klunzinger P, Kosenkov D, Kowalczyk T, Krauter CM, Lao KU, Laurent AD, Lawler KV, Levchenko SV, Lin CY, Liu F, Livshits E, Lochan RC, Luenser A, Manohar P, Manzer SF, Mao SP, Mardirossian N, Marenich AV, Maurer SA, Mayhall NJ, Neuscamman E, Oana CM, Olivares-Amaya R, O’Neill DP, Parkhill JA, Perrine TM, Peverati R, Prociuk A, Rehn DR, Rosta E, Russ NJ, Sharada SM, Sharma S, Small DW, Sodt A, Stein T, Stück D, Su YC, Thom AJ, Tsuchimochi T, Vanovschi V, Vogt L, Vydrov O, Wang T, Watson MA, Wenzel J, White A, Williams CF, Yang J, Yeganeh S, Yost SR, You ZQ, Zhang IY, Zhang X, Zhao Y, Brooks BR, Chan GK, Chipman DM, Cramer CJ, III WAG, Gordon MS, Hehre WJ, Klamt A, III HFS, Schmidt MW, Sherrill CD, Truhlar DG, Warshel A, Xu X, Aspuru-Guzik A, Baer R, Bell AT, Besley NA, Chai JD, Dreuw A, Dunietz BD, Furlani TR, Gwaltney SR, Hsu CP, Jung Y, Kong J, Lambrecht DS, Liang W, Ochsenfeld C, Rassolov VA, Slipchenko LV, Subotnik JE, Voorhis TV, Herbert JM, Krylov AI, Gill PM, Head-Gordon M (2015) Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol Phys 113(2):184–215CrossRefGoogle Scholar
  19. 19.
    Marenich A, Jerome S, Cramer C, Truhlar D (2012) Charge Model 5: an extension of Hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. J Chem Theory Comput 8:527–541CrossRefGoogle Scholar
  20. 20.
    Mei Y, Simmonett A, Pickard F IV, DiStasio R Jr, Brooks B, Shao Y (2015) Numerical study on the partitioning of the molecular polarizability into fluctuating charge and induced atomic dipole contributions. J Phys Chem A 119:5865–5882CrossRefGoogle Scholar
  21. 21.
    Mulliken R (1962) Criteria for the construction of good self-consistent-field molecular orbital wave functions, and the significance of LCAO-MO population analysis. J Chem Phys 36:3428–3439CrossRefGoogle Scholar
  22. 22.
    Mulliken R, Politzer P (1971) A comparison of two atomic charge definitions as applied to the hydrogen fluoride molecule. J Chem Phys 55:5135–5136CrossRefGoogle Scholar
  23. 23.
    Weinhold F (2012) Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives. J Comp Chem 33:2363–2379CrossRefGoogle Scholar
  24. 24.
    Editorial (2013) NBO 6.0 the next generation in natural bond orbital methods. J Comp Chem 34:1429–1472CrossRefGoogle Scholar
  25. 25.
    (2012–2016) NBO 6.0 Homepage, What are NBOs (and other ”Natural-type Orbitals”)?
  26. 26.
    Sigfridsson E, Ryde U (1998) Comparison of methods for deriving atomic charges from the electrostatic potential and moments. J Comp Chem 19:377–395CrossRefGoogle Scholar
  27. 27.
    Breneman C, Wiberg K (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373CrossRefGoogle Scholar
  28. 28.
    Bader R, Carroll M, Cheeseman J, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Soc 109:7968–7979CrossRefGoogle Scholar
  29. 29.
    Tognetti V, Joubert C (2014) Density functional theory and Bader’s atoms-in-molecules theory: towards a vivid dialogue. Phys Chem Chem Phys 16:14539–14550CrossRefGoogle Scholar
  30. 30.
    Matta C, Boyd R (2007) The quantum theory of atoms in molecules. Wiley, WeinheimCrossRefGoogle Scholar
  31. 31.
    Parr R, Ayers P, Nalewajski R (2005) What is an atom in a molecule? J Phys Chem 109:3957–3959CrossRefGoogle Scholar
  32. 32.
    Hirshfeld F (1977) Bonded-atom fragments for describing molecular charge-densities. Theor Chem Acc 44:129–138CrossRefGoogle Scholar
  33. 33.
    Bultinck P, v Alsenoy C, Ayers P, Carbó-Dorca R (2007) Critical analysis and extension of the Hirshfeld atoms in molecules. J Chem Phys 126:14411–9CrossRefGoogle Scholar
  34. 34.
    Saha S, Roy R, Ayers P (2009) Are the Hirshfeld and Mulliken population analysis schemes consistent with chemical intuition? Int J Quantum Chemistry 109:1790–1806CrossRefGoogle Scholar
  35. 35.
    Saez D, Vöhringer-Martínez E (2015) A consistent S-Adenosylmethionine force field improved by dynamic Hirshfeld-I atomic charges for biomolecular simulation. J Comput Aided Mol Des 29:951–961CrossRefGoogle Scholar
  36. 36.
    Wang J, Wolf R, Caldwell J, Kollman P, Case D (2004) Development and testing of a general AMBER force field. J Comp Chem 25:1157–1174CrossRefGoogle Scholar
  37. 37.
    Wang J, Wang W, Kollman P, Case D (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260CrossRefGoogle Scholar
  38. 38.
    Pople J (1999) Nobel lecture: quantum chemical models. Rev Mod Phys 71:1267–1274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMexico CityMéxico

Personalised recommendations