Studies of hydrogen sulfide and ammonia adsorption on P- and Si-doped graphene: density functional theory calculations

  • Víctor Eduardo Comparán PadillaEmail author
  • María Teresa Romero de la Cruz
  • Yuliana Elizabeth Ávila Alvarado
  • Reyes García Díaz
  • Carlos Eduardo Rodríguez García
  • Gregorio Hernández Cocoletzi
Original Paper


Studies of hydrogen sulfide (H2S) and ammonia (NH3) adsorption on phosphorus (P) and silicon (Si) doped graphene are performed by ab initio calculations using the periodic density functional theory (DFT). The P and Si incorporation in graphene distorts the unit cell altering the bond lengths and angles. Unlike the pristine, the phosphorus-doped graphene shows a metallic behavior, and the silicon-doped graphene is a semiconductor with an energy gap of 0.25 eV. Moreover, the electronic properties of phosphorus-doped graphene may change with the adsorption of hydrogen sulfide and ammonia. However, the silicon-doped graphene only shows changes with the adsorption of hydrogen sulfide. In addition, the silicon-doped graphene exhibits chemisorption when interacting with ammonia. According to the obtained results, phosphorus-doped graphene is suitable as a gas sensor of hydrogen sulfide and ammonia, in contrast with the silicon-doped structure, which may be used as a sensor of hydrogen sulfide.

Graphical Abstract

Ammonia adsorption on Si-doped graphene


Graphene Doped Adsorption Density functional theory Gas sensor 



The authors would like to thank the doctorate program in materials of the Universidad Autónoma de Coahuila. RGD would like to acknowledge CONACyT postdoctoral scholarship. G.H.C. acknowledges the financial support of VIEP-BUAP, grant HECG-EXC-157, CONACYT project #223180 and Cuerpo Académico Física Computacional de la Materia Condensada (BUAP-CA-191). Calculations were performed in the IFUAP and LNS-BUAP.


  1. 1.
    Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43:7067–7098CrossRefGoogle Scholar
  2. 2.
    Whitener KE, Sheehan PE (2014) Graphene synthesis. Diam Rel Mat 46:25–34CrossRefGoogle Scholar
  3. 3.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  4. 4.
    Shao Y, Zhang S, Engelhard M, Li G, Shao G, Wang Y, Liu J, Aksa IA, Lin Y (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20:7491–7496CrossRefGoogle Scholar
  5. 5.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRefGoogle Scholar
  6. 6.
    Jo G, Choe M, Lee S, Park W, Kahng YH, Lee T (2012) The application of graphene as electrodes in electrical and optical devices. Nanotechnology 23:1–20Google Scholar
  7. 7.
    Bandosz TJ (2002) On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. J Colloid Interface Sci 246:1–20CrossRefGoogle Scholar
  8. 8.
    Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem 21(10):3335CrossRefGoogle Scholar
  9. 9.
    Wang Y, Shao Y, Matson D, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798CrossRefGoogle Scholar
  10. 10.
    Niu F, Tao L, Deng Y, Wang Q, Song W (2014) Phosphorus doped graphene nanosheets for room temperature NH3 sensing. New J Chem 38:2269–2272CrossRefGoogle Scholar
  11. 11.
    Varghese S, Lonkar S, Singh KK, Swaminathan S, Abdala A (2015) Recent advances in graphene based gas sensors. Sensors Actuators B 218:160–183CrossRefGoogle Scholar
  12. 12.
    Yoo E, Zhou H (2014) Hybrid electrolyte Li-air rechargeable batteries based on nitrogen- and phosphorus-doped graphene nanosheets. RSC Adv 4:13119–13122CrossRefGoogle Scholar
  13. 13.
    Wen Y, Wang B, Huang C, Wang L, Hulicova-Jurcakova D (2015) Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chem Eur J 21:80–85CrossRefGoogle Scholar
  14. 14.
    Lv R, dos Santos MC, Antonelli C, Feng S, Fujisawa K, Berkdemir A, Cruz-Silva R, Elías AL, Perea-López N, Lópes-Urías F, Terrones H, Terrones M (2014) Large-area Si-doped graphene: controllable synthesis and enhanced molecular sensing. Adv Mater 26:7593–7599CrossRefGoogle Scholar
  15. 15.
    Zou Y, Li F, Zhu ZH, Zhao MW, Xu XG, Su XY (2011) An ab initio study on gas sensing properties of graphene and Si-doped graphene. Eur Phys J B 81:475–479CrossRefGoogle Scholar
  16. 16.
    Mao S, Lu G, Chen J (2014) Nanocarbon-based gas sensors: progress and challenges. J Mater Chem A 2(16):5573–5579CrossRefGoogle Scholar
  17. 17.
    Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensor. Nano Lett 8(10):3137–3140CrossRefGoogle Scholar
  18. 18.
    Shen F, Wang D, Liu R, Pei X, Zhang T, Jin J (2013) Edge-tailored graphene oxide nanosheet-based field effect transistors for fast and reversible electronic detection of sulfur dioxide. Nanoscale 5:537–540CrossRefGoogle Scholar
  19. 19.
    Ma J, Michaelides A, Alfè D, Schimka L, Kresse G, Wang E (2011) Adsorption and diffusion of water on graphene from first principles. Phys Rev B 84:033402-1 033402-4Google Scholar
  20. 20.
    Leenaerts O, Partoens B, Peeters FM (2009) Water on graphene: hydrophobicity and dipole moment using density functional theory. Phys Rev B 79:235440-1 235440-5CrossRefGoogle Scholar
  21. 21.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G, Cococcioni M, Dabo I, Corso A, Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin L, Marzari N, Mauri F, Mazzarello R, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A, Smogunov A, Umari P, Wentzcovitch R (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502CrossRefGoogle Scholar
  22. 22.
    Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  24. 24.
    Popov VN, Lambin P (2006) Carbon nanotubes: from basic research to nanotechnology. Springer, Dordrecht, p 253Google Scholar
  25. 25.
    Chi M, Zhao YP (2009) Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: a first principle study. Comput Mater Sci 46(4):1085–1090CrossRefGoogle Scholar
  26. 26.
    Hernández JJ, Ramírez RE, Escobedo A, Chigo E (2011) First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide. J Mol Model 17(5):1133–1139CrossRefGoogle Scholar
  27. 27.
    Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj G, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, structure and properties of boron- and nitrogen-doped graphene. Adv Mater 21:4726–4730Google Scholar
  28. 28.
    Xue Y, Wu B, Liu H, Tan J, Liu Y (2014) Direct synthesis of phosphorus and nitrogen co-doped monolayer graphene with air-stable n-type characteristics. Phy Chem Chem Phys 16:20392–20397CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Víctor Eduardo Comparán Padilla
    • 1
    Email author
  • María Teresa Romero de la Cruz
    • 2
  • Yuliana Elizabeth Ávila Alvarado
    • 3
  • Reyes García Díaz
    • 4
  • Carlos Eduardo Rodríguez García
    • 2
  • Gregorio Hernández Cocoletzi
    • 5
  1. 1.Centro de Investigación en Química AplicadaSaltilloMexico
  2. 2.Facultad de Ciencias Físico MatemáticasUniversidad Autónoma de CoahuilaSaltilloMexico
  3. 3.Facultad de SistemasUniversidad Autónoma de CoahuilaArteagaMexico
  4. 4.CONACyT-Facultad de Ciencias Físico MatemáticasUniversidad Autónoma de CoahuilaSaltilloMexico
  5. 5.Instituto de Física Luis Rivera TerrazasBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations