DFT study of CO adsorption on nitrogen/boron doped-graphene for sensor applications

  • Leslie-Fernanda Velázquez-López
  • Sandy-María Pacheco-Ortin
  • Roberto Mejía-Olvera
  • Esther Agacino-ValdésEmail author
Original Paper


We have performed a Density Functional study of the CO adsorption in B-doped, N-doped and BN-co-doped graphene considering a coronene based model in order to estimate the applications of this systems as CO-sensor. Different monosubstituted, disubstituted and trisubstituted alternatives of combining these two heteroatoms in a substitutional chemical doping and the influence of the relative positions of the heteroatoms are analyzed. In this study, the stability selectivity for CO adsorption and the change in the electric properties for the presence of this molecule, have been evaluated through the calculation of binding energy, CO-adsorption’s energy and the gap HOMO-LUMO change due to CO adsorption. The results indicated that, even though all the configurations were stables and was confirmed a CO physical adsorption in all of them, the relative positions of Nitrogen and Boron gave different stabilities and different responses to the CO adsorption. Since monosubstituted Boron-coronene was the second in stability respect to pristine coronene, showed the highest CO adsorption energy and was also the second highest ∆(∆HOMO-LUMO) value, this structure could be potentially a good CO-sensor.


DFT NB-doped graphene Carbon monoxide Gas CO-sensor Adsorption 



We thank the Programa interno de apoyo para Proyectos de investigación (PIAPI)-Facultad de Estudios Superiores Cuautitlán–Universidad Nacional Autónoma de México with Grant PIAPI-1813. We gratefully acknowledge the generous computing time provided by Dirección General de Cómputo y de Tecnologías de Información y Comunicación at the Universidad Nacional Autónoma de México through the Grants LANCAD-UNAM-DGTIC-156. The authors also thanks Red Mexicana de Fisicoquímica Teórica (CONACyT).


  1. 1.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  2. 2.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science 321:385–388CrossRefGoogle Scholar
  3. 3.
    Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of grapheme. Rev Mod Phys 81:109–162CrossRefGoogle Scholar
  4. 4.
    Morozov SV, Novoselov KS, Katsnelson MI et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:016602CrossRefGoogle Scholar
  5. 5.
    Mukherjee S, Kaloni TP (2012) Electronic properties of boron- and nitrogen-doped graphene: a first principles study. J Nanopart Res 14:1059–1063Google Scholar
  6. 6.
    Lu G, Yu K, Wen Z, Chen J (2013) Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale 5:1353–1368CrossRefGoogle Scholar
  7. 7.
    Usachov D, Vilkov O, Grneis A, Haberer D, Fedorov A, Adamchuk VK, Preobrajenski AB, Dudin P, Barinov A, Oehzelt M, Laubschat C, Vyalikh DV (2011) Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett 11:5401–5407CrossRefGoogle Scholar
  8. 8.
    Yu W, Zheng C, Wang D, Jiang Q (2010) Nitrogen/boron doping position dependence of the electronic properties of a triangular graphene. ACS Nano 4:7619–7629CrossRefGoogle Scholar
  9. 9.
    Zheng B, Hermet P, Henrard L (2010) Scanning tunneling microscopy simulations of nitrogen- and boron-doped graphene and single-walled carbon nanotubes. ACS Nano 4:4165–4173CrossRefGoogle Scholar
  10. 10.
    Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43:7067–7098CrossRefGoogle Scholar
  11. 11.
    Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758CrossRefGoogle Scholar
  12. 12.
    Fan X, Shen Z, Liu AQ, Kuo JL (2012) Band gap opening of graphene by doping small boron nitride domains. Nanoscale 4:2157–2165CrossRefGoogle Scholar
  13. 13.
    Yang GH, Zhou YH, Wu JJ, Cao JT, Li LL, Liu HY, Zhu JJ (2013) Microwave-assisted synthesis of nitrogen and boron co- doped graphene and its application for enhanced electrochemical detection of hydrogen peroxide. RSC Adv 3:22597–22604CrossRefGoogle Scholar
  14. 14.
    Kaloni TP, Joshi RP, Adhikari NP, Schwingenschlögl U (2014) Band gap Tunning in BN-doped graphene systems with high carrier mobility. Appl Phys Lett 104:073116CrossRefGoogle Scholar
  15. 15.
    Panchakarla LS, Subrahmanyam KS, Saha SK, Achutharao G, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21:1521–4095CrossRefGoogle Scholar
  16. 16.
    Rani P, Jindal VK (2013) Designing band gap of by B and NDopant atoms. RSC Adv 3:802–812CrossRefGoogle Scholar
  17. 17.
    Yang F, Cao Y, Chen Z, He X, Hou L, Li Y (2018) Large-scale preparation of B/N co-doped graphene-like carbon as an efficient metal-free catalyst for the reduction of nitroarenes. New J Chem 42:2718–2725CrossRefGoogle Scholar
  18. 18.
    Wei XL, Fang H, Wang RZ, Chen YP, Zhong JX (2011) Energy gaps in nitrogen delta-doping graphene: a first-principles study. Appl Phys Lett 99:012107CrossRefGoogle Scholar
  19. 19.
    Deifallah M, McMillan PF, Cora F (2008) Electronic and structural properties of two-dimensional carbon nitride graphenes. J Phys Chem C 112:5447–5453CrossRefGoogle Scholar
  20. 20.
    Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRefGoogle Scholar
  21. 21.
    Yavari F, Koratkar N (2012) Graphene-based chemical sensors. J Phys Chem Lett 3:1746–1753CrossRefGoogle Scholar
  22. 22.
    Jelolaica L, Sidis V (1999) DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphite surface. Chem Phys Lett 300:157–162CrossRefGoogle Scholar
  23. 23.
    Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on grapheme. Nat Mater 6:652–655CrossRefGoogle Scholar
  24. 24.
    Qazi M, Vogt T, Koley G (2007) Trace gas detection using nanostructured graphite layers. Appl Phys Lett 91:233101CrossRefGoogle Scholar
  25. 25.
    Kochmann S, Hirsch T, Wolfbeis OS (2012) Graphenes in chemical sensors and biosensors. Trends Anal Chem 39:87–113CrossRefGoogle Scholar
  26. 26.
    Zhang X, Cui H, Gui CY (2017) Synthesis of graphene-based sensors and application on detecting SF6 decomposing products: a review. Sensors 17:363CrossRefGoogle Scholar
  27. 27.
    Goldoni A, Larciprete R, Petaccia L, Lizzit S (2003) Single-Wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring. J Am Chem Soc 125:11329–11333CrossRefGoogle Scholar
  28. 28.
    Choudhuri N, Patra A, Mahata R, Ahuja BP (2015) B-N@ graphene: highly sensitive and selective gas sensor. J Phys Chem C 119:24827–24836CrossRefGoogle Scholar
  29. 29.
    Dai J, Giannozzi P, Yuan J (2009) Adsorption of pairs of NOx molecules on single-walled carbon nanotubes and formation of NO + NO3 from NO2. Surf Sci 603:3234CrossRefGoogle Scholar
  30. 30.
    Dai J, Yuan J, Giannozzi P (2009) Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. App Phys Lett 95:232105CrossRefGoogle Scholar
  31. 31.
    Wang T, Huang D, Yang Z, Xu S, He G, Li X, Hu N, Yin G, He D, Zhang L (2016) A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett 8(2):95–119CrossRefGoogle Scholar
  32. 32.
    Joshi RK, Gomez H, Alvi F, Kumar A (2010) Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions. J Phys Chem C 114:6610–6613CrossRefGoogle Scholar
  33. 33.
    Arsat R, Breedon M, Shafiei M, Spizziri PG, Gilje S, Kaner RB, Kalantar-Zadeh K, Wlodarski W (2009). Chem Phys Lett 467:344CrossRefGoogle Scholar
  34. 34.
    Ao ZM, Yang J, Li S, Jiang Q (2008) Enhancement of CO detection in Al doped graphene. Chem Phys Lett 461:276–279CrossRefGoogle Scholar
  35. 35.
    Rad AS, Shabestarib SS, Jafaric SA, Zardoostd MR, Mirabid A (2016) N-doped graphene as a nanostructure adsorbent for carbon monoxide: DFT calculations. Mol Phys 1362:3028Google Scholar
  36. 36.
    Kumar S, Meenakshi, Sharma H (2017) Effect of gas adsorption on graphene nanoribbons: a density functional theory. Mater Today Proc 4:10441–10445CrossRefGoogle Scholar
  37. 37.
    Zhang YH, Chen YB, Zhou KG, Liu CH, Zeng J, Zhang HL, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20:185504CrossRefGoogle Scholar
  38. 38.
    Rohini K, Daniel MRS, Swathi SR (2015) Intercalation of HF, H2O, and NH3 clusters within the bilayers of graphene and graphene oxide: predictions from coronene-based model systems. Phys Chem A 119:10935–10945CrossRefGoogle Scholar
  39. 39.
    Yeamin MB, Faginas-Lago N, Albert E, Cuesta IG, Sanchez-Marín J, Sánchez de Merás AMJ (2014) Multi-scale theoretical investigation of molecular hydrogen adsorption over graphene: coronene as a case study. RSC Adv 4:54447–54453CrossRefGoogle Scholar
  40. 40.
    Wilson J, Faginas-Lago N, Vekeman J, Cuesta IG, Sánchez-Marín J, Sánchez de Merás A (2018) Modeling the interaction of carbon monoxide with flexible graphene: from coupled cluster calculations to molecular-dynamics simulations. Chem Phys Chem 19:774–783CrossRefGoogle Scholar
  41. 41.
    Petrushenko IK, Petrushenko KB (2017) Physical adsorption of N-containing heterocycles on graphene-like boron nitride-carbon heterostructures: a DFT study. Comput Theor Chem 1117:162–168CrossRefGoogle Scholar
  42. 42.
    Rad AS, Shabestari SS, Mohseni S, Aghouzi SA (2016) Study on the adsorption properties of O3, SO2, and SO3 on B-doped graphene using DFT calculations. J Solid State Chem 237:204–210CrossRefGoogle Scholar
  43. 43.
    Wanno B, Tabtimsai C (2014) A DFT investigation of CO adsorption on VIIIB transition metal-doped graphene sheets. Superlattice Microst 67:110–117CrossRefGoogle Scholar
  44. 44.
    Chigo-Anota E, Salazar-Villanueva M, Hernandez-Cocoletzi H (2010) Density functional theory study of lithium and fluoride doped boron nitride sheet. Phys State Solid C 7:2559CrossRefGoogle Scholar
  45. 45.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRefGoogle Scholar
  46. 46.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc Wallingford CTGoogle Scholar
  47. 47.
    Burke K, Perdew JP, Levy M (1995) In: Seminario JM, Politzer P (eds) Modern density functional theory: a tool for chemistry. theoretical and computational chemistry, vol 2. Elsevier, AmsterdamGoogle Scholar
  48. 48.
    Wesolowski TA, Parisel O, Ellinger Y, Weber J (1997) Comparative study of benzene···X (X = O2, N2, CO) complexes using density functional theory:  the importance of an accurate exchange−correlation energy density at high reduced density gradients J Phys Chem A 101:7818–7825CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Investigaciones Teóricas, Facultad de Estudios Superiores CuautitlánUniversidad Nacional Autónoma de MéxicoCuautitlán IzcalliMexico
  2. 2.Departamento de Ciencias Químicas, Facultad de Estudios Superiores CuautitlánUniversidad Nacional Autónoma de MéxicoCuautitlán IzcalliMexico

Personalised recommendations