Advertisement

Periodic DFT modeling and vibrational analysis of silver(I) cyanide complexes of thioureas

  • Saeed AhmadEmail author
  • Ivelina GeorgievaEmail author
  • Muhammad Hanif
  • Muhammad Monim-ul-Mehboob
  • Shaukat Munir
  • Ahsan Sohail
  • Anvarhusein A. Isab
Original Paper
  • 51 Downloads

Abstract

The structures of non-ionic [Ag(Tu)(CN)] (1) and ionic [Ag(Dmtu)2]+[Ag(CN)2] (2) and [Ag(Imt)2]+[Ag(CN)2] (3) silver(I) complexes, where Tu = thiourea, Dmtu = N,N′-dimethylthiourea and Imt = imidazoline-2-thione), were modeled by periodic DFT/PAW-PBE calculations; results were in good agreement with experiments. The bonding ability of the thiourea ligands (Tu, Dmtu and Imt) and the rival Ag–C, Ag–S, Ag–N and Ag–Ag bonds were estimated by natural population analysis and natural bonding orbital calculations. The metal–ligand bond strengths were found to decrease in the following order Ag-CCN > Ag-Sthiourea > Ag–NCN, and the main bonding contribution was covalent, donor–acceptor and electrostatic, respectively. The non-ionic [Ag(Tu)(CN)] complex formation [distinguished from the ionic Ag(I) complexes] was explained with the largest bonding capacity of the sulfur donor atom of Tu ligand and the strongest covalent and donor-acceptor Ag–S(Tu) interaction. The infrared (IR) spectra of the experimentally observed structures were reliably interpreted and the IR vibrations, which were sensitive to the ligand coordination to Ag(I) ion and to the weak intra- and intermolecular interactions, were selected with the help of DFT frequency calculations in the solid state.

Graphical abstract

Non-ionic and ionic complex formation and the different coordination polyhedra around Ag(I) in three AgCN complexes of thioureas were evaluated by natural population analysis, natural bonding orbital, charge density and electron localization function calculations. The predicted largest capacity of sulfur (Tu) for donor–acceptor interaction, the largest bridging sulfur ability for three Ag ions and the strongest covalent and donor-acceptor Ag–S(Tu)3 interactions in 1 as compared to 2 and 3 explain the formation of a non-ionic complex, i.e., the Ag(CN)2 anion is missing in 1

Keywords

Silver(I) complexes Cyanide Thiourea Periodic DFT calculations 

Notes

Acknowledgments

The Deanship of Scientific Research, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia is gratefully acknowledged for supporting this work through Project No. 2016/01/6822. All calculations were performed on the MADARA computer cluster of the Bulgarian Academy of Sciences.

Supplementary material

894_2019_3970_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1639 kb)

References

  1. 1.
    Stocker FB, Britton D, Young VG (2000) Crystal structures of a family of silver cyanide complexes of thiourea and substituted thioureas. Inorg Chem 39:3479–3484CrossRefGoogle Scholar
  2. 2.
    Ferao AE, Afzal F, Aslam S, Muhammad IK, Ejaz, Khan IU, Fettouhi M, Isab AA, Ahmad S (2016) Synthesis, crystal structure and DFT calculations of bis(1,3-diazinane-2-thione-kappa S)dicyanido disilver(I), [{Ag(Diaz)(2)}{Ag(CN)(2)}]. Polyhedron 110:299–304CrossRefGoogle Scholar
  3. 3.
    Hanif M, Ahmad S, Altaf M, Stoeckli-Evans H (2007) Poly[bis(mu(2)-cyanido)-kappa C-2 : N;kappa N-2 : N-(mu(2)-N,N,N',N'-tetramethylthiourea-kappa S-2 : S)-disilver(I)]. Acta Crystallogr E 63:M2594–U1458CrossRefGoogle Scholar
  4. 4.
    Stocker FB, Britton D (2000) 1,2-Dicyano-1,2-bis(imidazolidine-2-thione)digold(I) and 2,2-dicyano-1,1-bis(dimethylthiourea)digold(I). Acta Crystallogr C 56:798–800CrossRefGoogle Scholar
  5. 5.
    Ahmad S, Isab AA, Ashraf W (2002) Multinuclear NMR (H-1, C-13, N-15 and Ag-107) studies of the silver cyanide complexes of thiourea and substituted thioureas. Inorg Chem Commun 5:816–819CrossRefGoogle Scholar
  6. 6.
    Ashraf W, Ahmad S, Isab AA (2004) Silver cyanide complexes of heterocyclic thiones. Transition Met Chem 29:400–404CrossRefGoogle Scholar
  7. 7.
    Ahmad S, Isab AA, Perzanowski HP (2002) Ligand scrambling reactions of cyano(thione)gold(I) complexes and determination of their equilibrium constants. Can J Chem 80:1279–1284CrossRefGoogle Scholar
  8. 8.
    Ahmad S (2004) The chemistry of cyano complexes of gold(I) with emphasis on the ligand scrambling reactions. Coord Chem Rev 248:231–243CrossRefGoogle Scholar
  9. 9.
    Ahmad S, Nadeem S, Anwar A, Hameed A, Tirmizi SA, Zierkiewicz W, Abbas A, Isab AA, Alotaibi MA (2017) Synthesis, characterization, DFT calculations and antibacterial activity of palladium(II) cyanide complexes with thioamides. J Mol Struct 1141:204–212CrossRefGoogle Scholar
  10. 10.
    Aslam S, Isab AA, Alotaibi MA, Saleem M, Monim-ul-Mehboob M, Ahmad S, Georgieva I, Trendafilova N (2016) Synthesis, spectroscopic characterization, DFT calculations and antimicrobial propetties of silver(I) complexes of 2,2'-bipyridine and 1,10-phenanthroline. Polyhedron 115:212–218CrossRefGoogle Scholar
  11. 11.
    Kresse G, Hafner J (1993) Ab initio molecular-dynamics for liquid-metals. Phys Rev B 47:558–561CrossRefGoogle Scholar
  12. 12.
    Kresse G, Hafner J (1994) Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269CrossRefGoogle Scholar
  13. 13.
    Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  14. 14.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  15. 15.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  16. 16.
    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562CrossRefGoogle Scholar
  17. 17.
    Wu X, Vanderbilt D, Hamann DR (2005) Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys Rev B 72: 035105Google Scholar
  18. 18.
    Gajdos M, Hummer K, Kresse G, Furthmuller J, Bechstedt F (2006) Linear optical properties in the projector-augmented wave methodology. Phys Rev B 73: 045112Google Scholar
  19. 19.
    Karhanek D, Bucko T, Hafner J (2010) A density-functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: II. Vibrational spectroscopy. J Phys Condens Matter 22: 265006PubMedGoogle Scholar
  20. 20.
    Frisch GWTMJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida TNM, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIA09. Gaussian Inc, Wallingford CTGoogle Scholar
  21. 21.
    Reed AE, Weinstock RB, Weinhold F (1985) Natural-population analysis. J Chem Phys 83:735–746CrossRefGoogle Scholar
  22. 22.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  23. 23.
    Ahmad S, Saleem M, Georgieva I, Ruffer T, Schaarschmidt D, Lang H, Murtaza G, Hussain I, Habib-ur-Rehman AA, Isab MR, Malik SA (2018) Synthesis, characterization, DFT calculations and antimicrobial studies of cadmium(II) sulfate complexes of thioureas and 2-mercaptopyridine; X-ray structures of polymeric diaqua(N,N'-dimethylthiourea) sulfatocadmium(II) and bis(2-mercaptopyridine)sulfatocadmium(II). Polyhedron 149:126–133CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Saeed Ahmad
    • 1
    Email author
  • Ivelina Georgieva
    • 2
    Email author
  • Muhammad Hanif
    • 3
  • Muhammad Monim-ul-Mehboob
    • 4
  • Shaukat Munir
    • 5
  • Ahsan Sohail
    • 5
  • Anvarhusein A. Isab
    • 6
  1. 1.Department of Chemistry, College of Sciences and HumanitiesPrince Sattam bin Abdulaziz UniversityAl-KharjSaudi Arabia
  2. 2.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria
  3. 3.School of Chemical SciencesUniversity of AucklandAucklandNew Zealand
  4. 4.Department of ChemistryGovernment Dyal Singh CollegeLahorePakistan
  5. 5.Department of ChemistryUniversity of Engineering and TechnologyLahorePakistan
  6. 6.Department of ChemistryKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations