Advertisement

Performance of DFT methods in the calculation of isotropic and dipolar contributions to 14N hyperfine coupling constants of nitroxide radicals

  • Oleg I. GromovEmail author
  • Sergei V. Kuzin
  • Elena N. Golubeva
Original Paper
  • 89 Downloads

Abstract

In the present study, we tested the widely used density functionals BP86, PBE, OLYP, TPSS, M06-L, B3LYP, PBE0, mPW1PW, B97, BHandHLYP, TPSS0, M06, M06-2X, CAM-B3LYP, ωB97x, and B2PLYP with the cc-pCVQZ basis set in calculations on a set of 23 nitroxide radicals with well-resolved 14N anisotropic hyperfine coupling (HFC) constants. The results were compared with those obtained using the B3LYP/N07D and PBE/N07D methods. The convergence of the HFC values to the complete basis set limit is briefly discussed. The best results were obtained using the M06/COSMO method, with a mean absolute deviation (MAD) of 0.4 G for the dipole–dipole contribution and MAD = 0.6 G for the contact coupling contribution (as compared to 1.1 G and 1.0 G, respectively, for the B3LYP/N07D/COSMO method and 1.7 G and 0.5 G, respectively, for the B3LYP/N07D method). The majority of the functionals yielded satisfactory results for the dipole–dipole contribution, but only the M06 functional yielded similar errors for both the dipole–dipole and isotropic contributions. The RIJCOSX and RI approximations introduced errors equal to or smaller than 0.01 G.

Keywords

EPR spectroscopy Nitroxide radical DFT Hyperfine coupling Benchmark 

Notes

Acknowledgements

The research was partially supported by the Russian Science Foundation (ENG, grant 14-33-00017) and the Russian Foundation for Basic Research (OIG, grant 18-33-00866 mol_a). Calculations were performed using resources of the Supercomputing Center of the Lomonosov Moscow State University [61].

Supplementary material

894_2019_3966_MOESM1_ESM.pdf (237 kb)
ESM 1 (PDF 237 kb)
894_2019_3966_MOESM2_ESM.xlsx (125 kb)
ESM 2 (XLSX 124 kb)

References

  1. 1.
    Weil JA, Bolton JR (2006) Electron paramagnetic resonance. Wiley, HobokenGoogle Scholar
  2. 2.
    Barone V, Cimino P, Pedone A (2010) An integrated computational protocol for the accurate prediction of EPR and PNMR parameters of aminoxyl radicals in solution. Magn Reson Chem 48:S11–S22.  https://doi.org/10.1002/mrc.2640 PubMedGoogle Scholar
  3. 3.
    Neese F (2009) In: Berliner L, Hanson G (eds) Spin-Hamiltonian parameters from first principle calculations: theory and application. Springer, New York, pp 175–229Google Scholar
  4. 4.
    Neese F (2009) Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coord Chem Rev 253:526–563.  https://doi.org/10.1016/j.ccr.2008.05.014 Google Scholar
  5. 5.
    Hedegård ED, Kongsted J, Sauer SPA (2013) Validating and analyzing EPR hyperfine coupling constants with density functional theory. J Chem Theory Comput 9:2380–2388.  https://doi.org/10.1021/ct400171c PubMedGoogle Scholar
  6. 6.
    Improta R, Barone V (2004) Interplay of electronic, environmental, and vibrational effects in determining the hyperfine coupling constants of organic free radicals. Chem Rev 104:1231–1254.  https://doi.org/10.1021/cr960085f PubMedGoogle Scholar
  7. 7.
    Barone V, Polimeno A (2006) Toward an integrated computational approach to CW-ESR spectra of free radicals. Phys Chem Chem Phys 8:4609.  https://doi.org/10.1039/b607998a PubMedGoogle Scholar
  8. 8.
    Cimino P, Pedone A, Stendardo E, Barone V (2010) Interplay of stereo-electronic, environmental, and dynamical effects in determining the EPR parameters of aromatic spin-probes: INDCO as a test case. Phys Chem Chem Phys 12:3741.  https://doi.org/10.1039/b924500f PubMedGoogle Scholar
  9. 9.
    Villamena FA (2010) Superoxide radical anion adduct of 5,5-dimethyl-1-pyrroline N-oxide. 6. Redox properties. J Phys Chem A 114:1153–1160.  https://doi.org/10.1021/jp909614u PubMedPubMedCentralGoogle Scholar
  10. 10.
    Cirujeda J, Vidal-Gancedo J, Jürgens O et al (2000) Spin density distribution of α-nitronyl aminoxyl radicals from experimental and ab initio calculated ESR isotropic hyperfine coupling constants. J Am Chem Soc 122:11393–11405.  https://doi.org/10.1021/ja0004884 Google Scholar
  11. 11.
    Stipa P (2006) A multi-step procedure for evaluating the EPR parameters of indolinonic aromatic aminoxyls: a combined DFT and spectroscopic study. Chem Phys 323:501–510.  https://doi.org/10.1016/j.chemphys.2005.10.016 Google Scholar
  12. 12.
    Hermosilla L, Calle P, García de la Vega JM, Sieiro C (2005) Density functional theory predictions of isotropic hyperfine coupling constants. J Phys Chem A 109:1114–1124.  https://doi.org/10.1021/jp0466901 PubMedGoogle Scholar
  13. 13.
    Hermosilla L, Calle P, García de la Vega JM, Sieiro C (2006) Density functional theory study of 14N isotropic hyperfine coupling constants of organic radicals. J Phys Chem A 110:13600–13608.  https://doi.org/10.1021/jp064900z PubMedGoogle Scholar
  14. 14.
    Hermosilla L, Calle P, García de la Vega JM, Sieiro C (2005) Theoretical isotropic hyperfine coupling constants of third-row nuclei (29Si, 31P, and 33S). J Phys Chem A 109:7626–7635.  https://doi.org/10.1021/jp0522361 PubMedGoogle Scholar
  15. 15.
    Barone V, Cimino P, Stendardo E (2008) Development and validation of the B3LYP/N07D computational model for structural parameter and magnetic tensors of large free radicals. J Chem Theory Comput 4:751–764.  https://doi.org/10.1021/ct800034c PubMedGoogle Scholar
  16. 16.
    Barone V, Cimino P (2008) Accurate and feasible computations of structural and magnetic properties of large free radicals: the PBE0/N07D model. Chem Phys Lett 454:139–143.  https://doi.org/10.1016/j.cplett.2008.01.080 Google Scholar
  17. 17.
    Hermosilla L, Prampolini G, Calle P et al (2013) Extension of the AMBER force field for nitroxide radicals and combined QM/MM/PCM approach to the accurate determination of EPR parameters of DMPO-H in solution. J Chem Theory Comput 9:3626–3636.  https://doi.org/10.1021/ct4003256 PubMedPubMedCentralGoogle Scholar
  18. 18.
    Charnock GTP, Krzystyniak M, Kuprov I (2012) Molecular structure refinement by direct fitting of atomic coordinates to experimental ESR spectra. J Magn Reson 216:62–68.  https://doi.org/10.1016/j.jmr.2012.01.003 PubMedGoogle Scholar
  19. 19.
    Elgabarty H, Wolff M, Glaubitz A et al (2013) First principles calculation of inhomogeneous broadening in solid-state cw-EPR spectroscopy. Phys Chem Chem Phys 15:16082.  https://doi.org/10.1039/c3cp51938d PubMedGoogle Scholar
  20. 20.
    Hermosilla L, Calle P, García de la Vega JM (2015) Modeling EPR parameters of nitrogen containing conjugated radical cations. RSC Adv 5:62551–62562.  https://doi.org/10.1039/C5RA08758A Google Scholar
  21. 21.
    Hermosilla L, de la VJMG, Sieiro C, Calle P (2011) DFT calculations of isotropic hyperfine coupling constants of nitrogen aromatic radicals: the challenge of nitroxide radicals. J Chem Theory Comput 7:169–179.  https://doi.org/10.1021/ct1006136 PubMedGoogle Scholar
  22. 22.
    Kokorin AI, Zaripov RB, Gromov OI et al (2016) Spin density distribution in a nitroxide biradical containing 13C-enriched acetylene groups in the bridge: DFT calculations and EPR investigation. Appl Magn Reson 47:1057–1067.  https://doi.org/10.1007/s00723-016-0813-5 Google Scholar
  23. 23.
    Whitten JL (1973) Coulombic potential energy integrals and approximations. J Chem Phys 58:4496–4501.  https://doi.org/10.1063/1.1679012 Google Scholar
  24. 24.
    Kendall RA, Früchtl HA (1997) The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development. Theor Chem Accounts 97:158–163.  https://doi.org/10.1007/s002140050249 Google Scholar
  25. 25.
    Dunlap BI, Connolly JWD, Sabin JR (1979) On some approximations in applications of Xα theory. J Chem Phys 71:3396–3402.  https://doi.org/10.1063/1.438728 Google Scholar
  26. 26.
    Baerends EJ, Ellis DE, Ros P (1973) Self-consistent molecular Hartree–Fock–Slater calculations I. The computational procedure. Chem Phys 2:41–51.  https://doi.org/10.1016/0301-0104(73)80059-X Google Scholar
  27. 27.
    Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor Chem Accounts 97:119–124.  https://doi.org/10.1007/s002140050244 Google Scholar
  28. 28.
    Eichkorn K, Treutler O, Öhm H et al (1995) Auxiliary basis sets to approximate coulomb potentials. Chem Phys Lett 240:283–290.  https://doi.org/10.1016/0009-2614(95)00621-A Google Scholar
  29. 29.
    Neese F, Wennmohs F, Hansen A, Becker U (2009) Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem Phys 356:98–109.  https://doi.org/10.1016/j.chemphys.2008.10.036 Google Scholar
  30. 30.
    Kossmann S, Neese F (2009) Comparison of two efficient approximate Hartree–Fock approaches. Chem Phys Lett 481:240–243.  https://doi.org/10.1016/j.cplett.2009.09.073 Google Scholar
  31. 31.
    Hedegård ED, Kongsted J, Sauer SPA (2012) Improving the calculation of electron paramagnetic resonance hyperfine coupling tensors for d-block metals. Phys Chem Chem Phys 14:10669.  https://doi.org/10.1039/c2cp40969k PubMedGoogle Scholar
  32. 32.
    Kossmann S, Kirchner B, Neese F (2007) Performance of modern density functional theory for the prediction of hyperfine structure: meta-GGA and double hybrid functionals. Mol Phys 105:2049–2071.  https://doi.org/10.1080/00268970701604655 Google Scholar
  33. 33.
    Sorokin ID, Gromov OI, Pergushov VI, Mel’nikov MY (2016) Cyclic form of the aziridine radical cation in a CF3CCl3 matrix at 77 K. Mendeleev Commun 26:332–334.  https://doi.org/10.1016/j.mencom.2016.07.022 Google Scholar
  34. 34.
    Medvedev MG, Bushmarinov IS, Sun J et al (2017) Density functional theory is straying from the path toward the exact functional. Science 355(80):49–52.  https://doi.org/10.1126/science.aah5975 PubMedGoogle Scholar
  35. 35.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170.  https://doi.org/10.1063/1.478522 Google Scholar
  36. 36.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241.  https://doi.org/10.1007/s00214-007-0310-x Google Scholar
  37. 37.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297.  https://doi.org/10.1039/b508541a PubMedGoogle Scholar
  38. 38.
    Sinnecker S, Rajendran A, Klamt A et al (2006) Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (direct COSMO-RS). J Phys Chem A 110:2235–2245.  https://doi.org/10.1021/jp056016z PubMedGoogle Scholar
  39. 39.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824.  https://doi.org/10.1103/PhysRevB.33.8822 Google Scholar
  40. 40.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100.  https://doi.org/10.1103/PhysRevA.38.3098 Google Scholar
  41. 41.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868.  https://doi.org/10.1103/PhysRevLett.77.3865 PubMedGoogle Scholar
  42. 42.
    Hoe W-M, Cohen AJ, Handy NC (2001) Assessment of a new local exchange functional OPTX. Chem Phys Lett 341:319–328.  https://doi.org/10.1016/S0009-2614(01)00581-4 Google Scholar
  43. 43.
    Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J Chem Phys 119:12129–12137.  https://doi.org/10.1063/1.1626543 Google Scholar
  44. 44.
    Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101.  https://doi.org/10.1063/1.2370993 PubMedGoogle Scholar
  45. 45.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627.  https://doi.org/10.1021/j100096a001 Google Scholar
  46. 46.
    Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–675.  https://doi.org/10.1063/1.475428 Google Scholar
  47. 47.
    Becke AD (1997) Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J Chem Phys 107:8554–8560.  https://doi.org/10.1063/1.475007 Google Scholar
  48. 48.
    Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377.  https://doi.org/10.1063/1.464304 Google Scholar
  49. 49.
    Tawada Y, Tsuneda T, Yanagisawa S et al (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425–8433.  https://doi.org/10.1063/1.1688752 PubMedGoogle Scholar
  50. 50.
    Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106.  https://doi.org/10.1063/1.2834918 PubMedGoogle Scholar
  51. 51.
    Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:034108.  https://doi.org/10.1063/1.2148954 PubMedGoogle Scholar
  52. 52.
    Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023.  https://doi.org/10.1063/1.456153 Google Scholar
  53. 53.
    Provasi PF, Aucar GA, Sauer SPA (2001) The effect of lone pairs and electronegativity on the indirect nuclear spin–spin coupling constants in CH2X (X = CH2, NH, O, S): ab initio calculations using optimized contracted basis sets. J Chem Phys 115:1324–1334.  https://doi.org/10.1063/1.1379331 Google Scholar
  54. 54.
    Neese F (2012) The ORCA program system. WIREs Comput Mol Sci 2:73–78.  https://doi.org/10.1002/wcms.81 Google Scholar
  55. 55.
    Lebedev YS, Grinberg OY, Dubinsky AA, Poluektov OG (1992) Investigation of spin labels and probes by millimeter band EPR. Bioactive spin labels. Springer, Berlin, pp 227–278Google Scholar
  56. 56.
    Egidi F, Bloino J, Cappelli C et al (2013) Tuning of NMR and EPR parameters by vibrational averaging and environmental effects: an integrated computational approach. Mol Phys 111:1345–1354.  https://doi.org/10.1080/00268976.2013.796413 Google Scholar
  57. 57.
    Cimino P, Pavone M, Barone V (2006) Structural, thermodynamic, and magnetic properties of adducts between TEMPO radical and alcohols in solution: new insights from DFT and discrete–continuum solvent models. Chem Phys Lett 419:106–110.  https://doi.org/10.1016/j.cplett.2005.11.067 Google Scholar
  58. 58.
    Barone V, Cimino P, Crescenzi O, Pavone M (2007) Ab initio computation of spectroscopic parameters as a tool for the structural elucidation of organic systems. J Mol Struct THEOCHEM 811:323–335.  https://doi.org/10.1016/j.theochem.2006.12.056 Google Scholar
  59. 59.
    Cimino P, Barone V (2005) Solvent effects on molecular interactions: new hints from an integrated density functional/polarizable continuum model. J Mol Struct THEOCHEM 729:1–9.  https://doi.org/10.1016/j.theochem.2004.12.047 Google Scholar
  60. 60.
    Witwicki M (2018) Density functional theory and ab initio studies on hyperfine coupling constants of phosphinyl radicals. Int J Quantum Chem 118:e25779.  https://doi.org/10.1002/qua.25779 Google Scholar
  61. 61.
    Sadovnichy V, Tikhonravov A, Voevodin V, Opanasenko V (2013) “Lomonosov”: supercomputing at Moscow State University. In: Vetter JS (ed) Contemporary high performance computing: from petascale toward exascale. CRC, Boca Raton, pp 283–307Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry DepartmentLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations