Advertisement

σ-Holes and Si···N intramolecular interactions

  • Jane S. Murray
  • Peter PolitzerEmail author
Original Paper
  • 74 Downloads
Part of the following topical collections:
  1. Tim Clark 70th Birthday Festschrift

Abstract

We report a computational study of two series of molecules, one having the Si–O–N linkage and the other with the Si–(CH2)n–N linkage, where n = 1–4. The silicons have various substituents—combinations of H, CH3, F, Cl and CF3. Many of these compounds have been prepared and characterized experimentally. The Si···N distances were found to be relatively short, which may denote a noncovalent interaction or may simply be dictated by the molecular structures. This and the nature of the interaction (if any) were the subjects of our study. We addressed these issues computationally, determining optimized geometries, energies and electrostatic potentials at the density functional M06-2X/6–31 + G(d,p) level. We conclude that there is an attractive Coulombic Si···N interaction in each case, although it is sometimes quite weak. It involves the lone pair of the nitrogen and the positive σ-hole potential produced on the silicon by the bonding from the substituent that is anti to the nitrogen. This accounts for the key features of these molecules, such as the dependence of the Si···N distances upon the electron-withdrawing power of the anti substituent and the effects of gauche chlorines in weakening the interactions. When the Si···N interactions are disrupted by rotation of the N(CH3)2 group or by conversion of the molecules to open-chain conformers, the Si···N distances lengthen and are essentially the same regardless of the substituent in the anti position. These observations confirm the presence of Si···N interactions in the original molecules.

Keywords

σ-Holes Intramolecular noncovalent interactions Electrostatic potentials Si···N interactions Tetrel bonds 

Notes

Acknowledgements

We are pleased to join in honoring Tim Clark, our good friend and collaborator and the godfather of the σ-hole.

References

  1. 1.
    Guthrie F (1863) On the Iodide of Iodammonium. J Chem Soc 16:239–244CrossRefGoogle Scholar
  2. 2.
    Remsen I, Norris JF (1896) Action of the halogens on the methylamines. Am Chem J 18:90–96Google Scholar
  3. 3.
    Gagnaux P, Susz BP (1960) Etudes de composés d'addition des acides de LEWIS. XII. Structure, spectre infrarouge et polarisation moléculaire du composé d'addition dioxanne-1, 4–diiodacétylène. Helv Chim Acta 43:948–956CrossRefGoogle Scholar
  4. 4.
    Bjorvatten T, Hassel O (1961) Crystal Structure of the 1:1 Addition Compound Dithiane-Iodoform. Acta Chem Scand 15:1429–1436CrossRefGoogle Scholar
  5. 5.
    Dahl T, Hassel O (1966) A Close Relation Between the Crystal Structure of an Acceptor and That of an Addition Compound. Acta Chem Scand 20:2009–2009CrossRefGoogle Scholar
  6. 6.
    Lorand JP (1971) A Crystalline Complex of Carbon Tetrabromide and 1,4-diazobicyclo[2.2.2]octane. Tetrahedron Lett:2511–2512CrossRefGoogle Scholar
  7. 7.
    Murray-Rust P, Motherwell WDS (1979) Computer retrieval and analysis of molecular geometry. 4. Intermolecular interactions. J Am Chem Soc 101:4374–4376CrossRefGoogle Scholar
  8. 8.
    Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) Intermolecular interactions of the carbon-fluorine bond: the crystallographic environment of fluorinated carboxylic acids and related structures. J Am Chem Soc 105:3206–3214CrossRefGoogle Scholar
  9. 9.
    Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) Angular preferences of intermolecular forces around halogen centers: preferred directions of approach of electrophiles and nucleophiles around carbon-halogen bond. J Am Chem Soc 108:4308–4314CrossRefGoogle Scholar
  10. 10.
    Blackstock SC, Lorand JP, Kochi JK (1987) Charge-transfer interactions of amines with tetrahalomethanes. X-Ray crystal structures of the donor-acceptor complexes of quinuclidine and diazabicyclo[2.2.2]octane with carbon tetrabromide. J Org Chem 52:1451–1460CrossRefGoogle Scholar
  11. 11.
    Bernard-Houplain M-C, Sandorfy C (1973) A Low Temperature Infrared Study of Hydrogen Bonding in N-Alkylacetamides. Can J Chem 51:3640–3647CrossRefGoogle Scholar
  12. 12.
    Di Paolo T, Sandorfy C (1974) On the Hydrogen Bond Breaking Ability of Fluorocarbons Containing Higher Halogens. Can J Chem 52:3612–3622CrossRefGoogle Scholar
  13. 13.
    Dumas J-M, Geron C, Peurichard H, Gomel M (1976). Bull Soc Chim Fr:720–722Google Scholar
  14. 14.
    Dumas J-M, Kern M, Janier-Dubry JL (1976). Bull Soc Chim Fr:1785–1787Google Scholar
  15. 15.
    Brinck T, Murray JS, Politzer P (1992) Surface Electrostatic Potentials of Halogenated Methanes as Indicators of Directional Intermolecular Interactions. Int J Quantum Chem 44(Suppl 19):57–64CrossRefGoogle Scholar
  16. 16.
    Brinck T, Murray JS, Politzer P (1993) Molecular Surface Electrostatic Potentials and Local Ionization Energies of Groups V – VII Hydrides and Their Anions: Relationships for Aqueous and Gas Phase Acidities. Int J Quantum Chem 48(Suppl 20):73–88CrossRefGoogle Scholar
  17. 17.
    Politzer P, Murray JS, Clark T (2010) Halogen Bonding: An Electrostatically-Driven Highly Directional Noncovalent Interaction. Phys Chem Chem Phys 12:7748–7757CrossRefGoogle Scholar
  18. 18.
    Politzer P, Murray JS (2013) Halogen Bonding: An Interim Discussion. ChemPhysChem 14:278–294CrossRefGoogle Scholar
  19. 19.
    Kolař MH, Hobza P (2016) Computer Modeling of Halogen Bonds and Other σ-Hole Interactions. Chem Rev 116:5155–5187CrossRefGoogle Scholar
  20. 20.
    Pauling L (1940) The Nature of the Chemical Bond. Cornell University Press, Ithaca, p 263,264Google Scholar
  21. 21.
    Bondi A (1964). J Phys Chem 68:441–451CrossRefGoogle Scholar
  22. 22.
    Nyburg SC, Wong-Ng W (1979). Proc Roy Soc (London) A 367:29–45CrossRefGoogle Scholar
  23. 23.
    Stevens ED (1979). Mol Phys 37:27–45CrossRefGoogle Scholar
  24. 24.
    Ikuta S (1990). J Mol Struct (Theochem) 205:191–201CrossRefGoogle Scholar
  25. 25.
    Price SL, Stone AJ, Lucas J, Rowland RS, Thornley AD (1994). J Am Chem Soc 116:4910–4918CrossRefGoogle Scholar
  26. 26.
    Tsirelson VG, Zou PF, Tang T-F, Bader RFW (1995). Acta Cryst A51:143–153CrossRefGoogle Scholar
  27. 27.
    Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996). J Am Chem Soc 118:3108–3116CrossRefGoogle Scholar
  28. 28.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen Bonding: The σ-Hole. J Mol Model 13:291–296CrossRefGoogle Scholar
  29. 29.
    Murray JS, Lane P, Clark T, Politzer P (2007) σ-Hole Bonding: Molecules Containing Group VI Atoms. J Mol Model 13:1033–1038CrossRefGoogle Scholar
  30. 30.
    Murray JS, Lane P, Politzer P (2007) A Predicted New Type of Directional Noncovalent Interaction. Int J Quantum Chem 107:2286–2292CrossRefGoogle Scholar
  31. 31.
    Murray JS, Lane P, Politzer P (2009) Expansion of the σ-Hole Concept. J Mol Model 15:723–729CrossRefGoogle Scholar
  32. 32.
    Politzer P, Murray JS, Clark T (2013) Halogen Bonding and other σ-Hole Interactions: A Perspective. Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  33. 33.
    Politzer P, Murray JS, Janjić GV, Zarić SD (2014) σ-Hole Interactions of Covalently-Bonded Nitrogen, Phosphorus and Arsenic: A Survey of Crystal Structures. Crystals 4:12–31CrossRefGoogle Scholar
  34. 34.
    Politzer P, Murray JS, Clark T, Resnati G (2017) The σ-Hole Revisited. Phys Chem Chem Phys 19:32116–32178CrossRefGoogle Scholar
  35. 35.
    Shields ZP, Murray JS, Politzer P (2010) Directional Tendencies of Halogen and Hydrogen Bonding. Int J Quantum Chem 110:2823–2832CrossRefGoogle Scholar
  36. 36.
    Hennemann M, Murray JS, Riley KE, Politzer P, Clark T (2012) Polarization-Induced σ-Holes and Hydrogen Bonding. J Mol Model 18:2461–2469CrossRefGoogle Scholar
  37. 37.
    Hellmann H (1937) Einführung in die Quantenchemie. Deuticke, LeipzigGoogle Scholar
  38. 38.
    Feynman RP (1939) Forces in Molecules. Phys Rev 56:340–343CrossRefGoogle Scholar
  39. 39.
    Palusiak M (2010). J Mol Struct (Theochem) 945:89–92CrossRefGoogle Scholar
  40. 40.
    Ding X, Tuikka M, Haukka M (2012) In: Benedict JB (ed) Halogen Bonding in Crystal Engineering, Recent Advances in Crystallography. IntechOpen.  https://doi.org/10.5772/48592 Google Scholar
  41. 41.
    Huber SM, Jiminez-Izal E, Ugalde JM, Infante I (2012). Chem Commun 48:7708–7710CrossRefGoogle Scholar
  42. 42.
    Thirman J, Engelage E, Huber SM, Head-Gordon M (2018). Phys Chem Chem Phys 20:905–915CrossRefGoogle Scholar
  43. 43.
    Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on Halogen Bonding and Other σ-Hole Interactions: lex parsimoniae (Occam’s Razor). Comput Theor Chem 998:2–8CrossRefGoogle Scholar
  44. 44.
    Clark T, Murray JS, Politzer P (2014) The Role of Polarization in a Halogen Bond. Aust J Chem 67:451–456CrossRefGoogle Scholar
  45. 45.
    Politzer P, Murray JS, Clark T (2015) σ-Hole Bonding: A Physical Interpretation. Top Curr Chem 358:19–42CrossRefGoogle Scholar
  46. 46.
    Clark T, Politzer P, Murray JS (2015) Correct Electrostatic Treatment of Noncovalent Interactions: The Importance of Polarisation. WIREs Comput Mol Sci 5:169–177CrossRefGoogle Scholar
  47. 47.
    Politzer P, Murray JS, Clark T (2015) Mathematical Modeling and Physical Reality in Noncovalent Interactions. J Mol Model 21(52):1–10Google Scholar
  48. 48.
    Clark T, Hesselmann A (2018). Phys Chem Chem Phys 20:22849–22855CrossRefGoogle Scholar
  49. 49.
    Clark T, Murray JS, Politzer P (2018) The σ-Hole Coulombic Interpretation of Trihalide Anion Formation. ChemPhysChem 19:3044–3049CrossRefGoogle Scholar
  50. 50.
    Dance I (2003) Distance Criteria for Crystal Packing Analysis of Supramolecular Motifs. New J Chem 27:22–27CrossRefGoogle Scholar
  51. 51.
    Alvarez S (2013) A Cartogaphy of the van der Waals Territories. Dalton Trans 42:8617–8636CrossRefGoogle Scholar
  52. 52.
    Politzer P, Murray JS (2017) σ-Hole Interactions: Perspectives and Misconceptions. Crystals 7(1-14):212CrossRefGoogle Scholar
  53. 53.
    Murray JS, Resnati G, Politzer P (2017) Close Contacts and Noncovalent Interactions in Crystals. Faraday Disc 203:113–130CrossRefGoogle Scholar
  54. 54.
    Nayak SK, Kumar V, Murray JS, Politzer P, Terraneo G, Pilati T, Metrangolo P, Resnati G (2017) Fluorination Promotes Chalcogen Bonding in Crystalline Solids. CrystEngComm 19:4955–4959CrossRefGoogle Scholar
  55. 55.
    Politzer P, Murray JS (2012) Non-hydrogen-bonding Intramolecular Interactions: Important But Often Overlooked. In: Chemistry I, Leszczynski J, Shukla MK (eds) Practical Aspects of Computational. Springer, Amsterdam ch 16Google Scholar
  56. 56.
    Ivanic J, Atchity GJ, Ruedenberg K (2008). Theor Chem Acc 120:281–294CrossRefGoogle Scholar
  57. 57.
    Grimme S, Mück-Lichtenfeld C, Erker G, Wang H, Beckers H, Willner H (2009) When Do Interacting Atoms Form a Chemical Bond? Spectroscopic Measurements and Theoretical Analyses of Dideuteriophenanthrene. Angew Chem Int Ed 48:2592–2595CrossRefGoogle Scholar
  58. 58.
    Bader RFW (2009). J Phys Chem A 113:10391–10396CrossRefGoogle Scholar
  59. 59.
    Foroutan-Nejad C, Shahbazian S, Marek R (2014) Toward a Consistent Interpretation of the QTAIM: Tortuous Link between Chemical Bonds, Interactions, and Bond/Line Path. Chem Eur J 20:10140–10152CrossRefGoogle Scholar
  60. 60.
    Clark T, Murray JS, Politzer P (2018) A Perspective on Quantum Mechanics and Chemical Concepts in Describing Noncovalent Interactions. Phys Chem Chem Phys 20:30076–30082CrossRefGoogle Scholar
  61. 61.
    Mitzel NW, Losehand U (1997) Angew Chem Int Ed Engl 36:2807-2809Google Scholar
  62. 62.
    Mitzel NW, Losehand U (1998) J Am Chem Soc 120:7320-7327Google Scholar
  63. 63.
    Mitzel NW, Losehand U (1998) Eur J Inorg Chem 2023-2026Google Scholar
  64. 64.
    Mitzel NW, Losehand U, Richardson AD (1999) Inorg Chem 38:5323-5328Google Scholar
  65. 65.
    Losehand U, Mitzel NW, Rankin DWH (1999) J Chem Soc Dalton Trans 4291-4297Google Scholar
  66. 66.
    Mitzel NW, Losehand U, Wu A, Cremer D, Rankin DWH (2000) J Am Chem Soc 122:4471-4482Google Scholar
  67. 67.
    Vojinović K, Mitzel NW, Foerster T, Rankin DWH (2004) Z Naturforsch 59b:1505-1511Google Scholar
  68. 68.
    Mitzel NW, Vojinović K, Frölich R, Foerster T, Robertson HE, Borisenko KB, Rankin DWH (2005) J Am Chem Soc 127:13705-13713Google Scholar
  69. 69.
    Mitzel NW, Blake AJ, Rankin DWH (1997) J Am Chem Soc 119:4143-4148Google Scholar
  70. 70.
    Mitzel NW, Kiener C, Rankin DWH (1999) Organometall 18:3437-3444Google Scholar
  71. 71.
    Bader RFW (1990) Atoms in Molecules: A Quantum Theory. Oxford University Press, OxfordGoogle Scholar
  72. 72.
    Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928CrossRefGoogle Scholar
  73. 73.
    Bader RFW (1998) J Phys Chem A 102:7314-7323Google Scholar
  74. 74.
    Cerpa E, Krapp A, Vela A, Merino G (2008) The Implications of Symmetry of the External Potential on Bond Paths. Chem Eur J 14:10232–10234CrossRefGoogle Scholar
  75. 75.
    Dem’yanov P, Polestshuk P (2012) Chem Eur J 18:4982-4993Google Scholar
  76. 76.
    Lane JR, Contreras-Garcia J, Piquemal J-P, Miller BJ, Kjaergaard (2013) Are Bond Critical Points Really Critical for Hydrogen Bonding? J Chem Theory Comput 9:3263–3266CrossRefGoogle Scholar
  77. 77.
    Spackman MA (2015) How Reliable Are Intermolecular Interaction Energies Estimated from Topological Analysis of Experimental Electron Densities? Cryst Growth Des 15:5624–5628CrossRefGoogle Scholar
  78. 78.
    Wick CR, Clark T (2018) J Mol Model 24:142(1-9)Google Scholar
  79. 79.
    Shahbazian S (2018) Chem Eur J 24:5401-5405Google Scholar
  80. 80.
    Murray JS, Concha MC, Politzer P (2011) J Mol Model 17:2151-2157Google Scholar
  81. 81.
    Stewart RF (1979) Chem Phys Lett 65:335-342Google Scholar
  82. 82.
    Politzer P, Truhlar DG (eds) (1981) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Plenum Press, New YorkGoogle Scholar
  83. 83.
    Klein CL, Stevens ED (1988) In: Liebman JF, Goldberg A (eds) Structure and Reactivity. VCH Publishers, New York, ch. 2, pp. 26–64Google Scholar
  84. 84.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968-7979Google Scholar
  85. 85.
    Frisch MJ et al (2009) Gaussian 09, Revision A1. Gaussian, Inc, WallingfordGoogle Scholar
  86. 86.
    Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative Analysis of Molecular Surfaces: Areas, Volumes, Electrostatic Potentials and Average Local Ionization Energies. J Mol Model 16:1679–1691CrossRefGoogle Scholar
  87. 87.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215-241Google Scholar
  88. 88.
    Doemer M, Tavernelli I, Röthlisberger U (2013) J Chem Theory Comput 9:955-964Google Scholar
  89. 89.
    Mitzel NW (1998) Chem Eur J 4:692-698Google Scholar
  90. 90.
    Hagemann M, Berger RJF, Hayes SA, Stammler H-G, Mitzel NW (2008) Chem Eur J 14:11027-11038Google Scholar
  91. 91.
    Slater JC (1972) J Chem Phys 57:2389-2396Google Scholar
  92. 92.
    Desiraju GR, Shing Ho P, Kloo L, Legon AC, Maarquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Pure Appl Chem 85:1711-1713Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of New OrleansNew OrleansUSA

Personalised recommendations