Advertisement

Partial combination of composite strategy and the B3LYP functional for the calculation of enthalpies of formation

  • Mariana Toretti Caldeira
  • Rogério CustodioEmail author
Original Paper

Abstract

The B3LYP functional was re-optimized using partially composite methods for the calculation of standard enthalpies of formation. Two initial methods (B3LYP-MCM1 and B3LYP-MCM2) differing in the type and number of optimized parameters were analyzed using B3LYP/6–31 + G(2df,p) as the reference energy. For the first method (B3LYP-MCM1), the exchange-correlation and higher-level correction parameters (HLC) were optimized and for the second method (B3LYP-MCM2), in addition to the previous parameters, scaling of the basis functions responsible for large errors in the enthalpy of formation were also optimized. The best parameters were also used as adapted functionals generating two other methods referred to as: B3LYP-MF1 and B3LYP-MF2. The best-performing results (B3LYP-MCM2 and B3LYP-MF2) presented mean absolute errors near 2.3 kcal mol−1 for the G3/05 test set. This is a significant improvement when compared with the respective results from B3LYP/6–31 + G(2df,p), which yielded a mean absolute error of 5.3 kcal mol−1. The errors were larger for B3LYP-MCM1 (4.17 kcal mol−1) and B3LYP-MF1 (3.98 kcal mol−1). The scaling of the experimental atomization energies used for the calculation of enthalpy of formation was also tested for all four methods. This empirical adjustment reduced the errors to 2 kcal mol−1. The uncertainty of the best results with 95% confidence tended to be ± 5.5 kcal mol−1. Substantial improvements were associated with the basis set adjustments.

Keywords

Composite methods Density functional theory B3LYP Standard enthalpy of formation Empirical corrections 

Notes

Acknowledgments

The authors wish to thank Dr. Cleuton de Sousa Silva and Guilherme Luiz Chinini for helpful discussion and suggestions. We acknowledge financial support from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo - Center for Computational Engineering and Sciences, Grant 2013/08293-7, and Grant 2017/11485-6), and FAEPEX-UNICAMP (Fundo de Apoio ao Ensino, à Pesquisa e à Extensão da UNICAMP). This study was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The National Center of High-Performance Computing in São Paulo (CENAPAD-SP) is acknowledged for access to their computational facilities. MTC wishes to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for a scholarship.

Supplementary material

894_2019_3952_MOESM1_ESM.docx (82 kb)
ESM 1. The supplemental file contains: Table S.1 (the mean absolute error of B3LYP with different basis functions for enthalpies of formation for a selected set of molecules), Table S.2 (compilation of the scaled basis set in a format compatible with the Gaussian input file), Table S.3 (experimental and theoretical enthalpies of formation (kcal mol−1) for the G3/05 test set using B3LYP, B3LYP-MCM1, B3LYP-MCM2, B3LYP-MF1 and B3LYP-MF1), and Table S.4 (experimental and theoretical enthalpies of formation (kcal mol−1) for the G3/05 test set using B3LYP-MCM1-At, B3LYP-MCM2-At, B3LYP-MF1-At and B3LYP-MF1-At). (DOCX 82 kb)

References

  1. 1.
    Ziegler T (1991) Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem Rev 91:651–667.  https://doi.org/10.1021/cr00005a001 CrossRefGoogle Scholar
  2. 2.
    Jones RO (2015) Density functional theory: Its origins, rise to prominence, and future. Rev Mod Phys 87:897–923.  https://doi.org/10.1103/RevModPhys.87.897 CrossRefGoogle Scholar
  3. 3.
    Cohen AJ, Mori-Sánchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112:289–320.  https://doi.org/10.1021/cr200107z CrossRefPubMedGoogle Scholar
  4. 4.
    Burke K (2012) Perspective on density functional theory. J Chem Phys 136:150901.  https://doi.org/10.1063/1.4704546 CrossRefPubMedGoogle Scholar
  5. 5.
    Pribram-Jones A, Gross DA, Burke K (2015) DFT: A theory full of holes? Annu Rev Phys Chem.  https://doi.org/10.1146/annurev-physchem-040214-121420
  6. 6.
    Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377.  https://doi.org/10.1063/1.464304 CrossRefGoogle Scholar
  7. 7.
    Tirado-Rives J, Jorgensen WL (2008) Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theory Comput 4:297–306.  https://doi.org/10.1021/ct700248k CrossRefPubMedGoogle Scholar
  8. 8.
    Redfern PC, Zapol P, Curtiss LA, Raghavachari K (2000) Assessment of Gaussian-3 and density functional theories for enthalpies of formation of C1−C16 alkanes. J Phys Chem A 104:5850–5854.  https://doi.org/10.1021/jp994429s CrossRefGoogle Scholar
  9. 9.
    Duan X-M, Song G-L, Li Z-H et al (2004) Accurate prediction of heat of formation by combining Hartree–Fock/density functional theory calculation with linear regression correction approach. J Chem Phys 121:7086–7095.  https://doi.org/10.1063/1.1786582 CrossRefPubMedGoogle Scholar
  10. 10.
    Chen P, Chieh Y, Tzeng S (2003) Density functional calculations of the heats of formation for various aromatic nitro compounds. J Mol Struct TheoChem 634:215–224.  https://doi.org/10.1016/S0166-1280(03)00345-2 CrossRefGoogle Scholar
  11. 11.
    Lu L, Hu H, Hou H, Wang B (2013) An improved B3LYP method in the calculation of organic thermochemistry and reactivity. Comput Theor Chem 1015:64–71.  https://doi.org/10.1016/j.comptc.2013.04.009 CrossRefGoogle Scholar
  12. 12.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57.  https://doi.org/10.1016/j.cplett.2004.06.011 CrossRefGoogle Scholar
  13. 13.
    Ganji MD (2014) Graphene: a first-principles B3LYP-D3 study. Phys Chem Chem Phys 17:2504–2511.  https://doi.org/10.1039/C4CP04399E CrossRefGoogle Scholar
  14. 14.
    Schneebeli ST, Bochevarov AD, Friesner RA (2011) Parameterization of a B3LYP specific correction for noncovalent interactions and basis set superposition error on a gigantic data set of CCSD(T) quality noncovalent interaction energies. J Chem Theory Comput 7:658–668.  https://doi.org/10.1021/ct100651f CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241.  https://doi.org/10.1007/s00214-007-0310-x CrossRefGoogle Scholar
  16. 16.
    DeYonker NJ, Cundari TR, Wilson AK (2006) The correlation consistent composite approach (cc <scp>CA</scp>): an alternative to the Gaussian-n methods. J Chem Phys 124:114104.  https://doi.org/10.1063/1.2173988 CrossRefPubMedGoogle Scholar
  17. 17.
    Pople JA, Head-Gordon M, Fox DJ et al (1989) Gaussian-1 theory: A general procedure for prediction of molecular energies. J Chem Phys 90:5622–5629.  https://doi.org/10.1063/1.456415 CrossRefGoogle Scholar
  18. 18.
    Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) Gaussian-3 theory using density functional geometries and zero-point energies. J Chem Phys 110:7650–7657.  https://doi.org/10.1063/1.478676 CrossRefGoogle Scholar
  19. 19.
    Petersson GA, Bennett A, Tensfeldt TG et al (1988) A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 89:2193–2218.  https://doi.org/10.1063/1.455064 CrossRefGoogle Scholar
  20. 20.
    Petersson GA, Tensfeldt TG, Montgomery JA (1991) A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods. J Chem Phys 94:6091–6101.  https://doi.org/10.1063/1.460448 CrossRefGoogle Scholar
  21. 21.
    Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110:2822–2827.  https://doi.org/10.1063/1.477924 CrossRefGoogle Scholar
  22. 22.
    Martin JML, de Oliveira G (1999) Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory. J Chem Phys 111:1843.  https://doi.org/10.1063/1.479454 CrossRefGoogle Scholar
  23. 23.
    Boese AD, Oren M, Atasoylu O et al (2004) W3 theory: Robust computational thermochemistry in the kJ/mol accuracy range. J Chem Phys 120:4129–4141.  https://doi.org/10.1063/1.1638736 CrossRefPubMedGoogle Scholar
  24. 24.
    Karton A, Rabinovich E, Martin JML, Ruscic B (2006) W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions. J Chem Phys 125:144108.  https://doi.org/10.1063/1.2348881 CrossRefPubMedGoogle Scholar
  25. 25.
    Tajti A, Szalay PGPG, Császár AG et al (2004) HEAT: High accuracy extrapolated ab initio thermochemistry. J Chem Phys 121:11599.  https://doi.org/10.1063/1.1811608 CrossRefPubMedGoogle Scholar
  26. 26.
    Bomble YJ, Vázquez J, Kállay M et al (2006) High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification. J Chem Phys 125:064108.  https://doi.org/10.1063/1.2206789 CrossRefGoogle Scholar
  27. 27.
    Peterson KA, Feller D, Dixon DA (2012) Chemical accuracy in ab initio thermochemistry and spectroscopy: current strategies and future challenges. Theor Chem Acc 131:1079.  https://doi.org/10.1007/s00214-011-1079-5 CrossRefGoogle Scholar
  28. 28.
    Curtiss LA, Redfern PC, Raghavachari K, Pople JA (1998) Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities. J Chem Phys 109:42.  https://doi.org/10.1063/1.476538 CrossRefGoogle Scholar
  29. 29.
    Rocha CMR, Pereira DH, Morgon NH, Custodio R (2013) Assessment of G3(MP2)//B3 theory including a pseudopotential for molecules containing first-, second-, and third-row representative elements. J Chem Phys 139:184108.  https://doi.org/10.1063/1.4826519 CrossRefPubMedGoogle Scholar
  30. 30.
    He B, Zhou H, Yang F, Li W-K (2015) A method for calculating the heats of formation of medium-sized and large-sized molecules. Open J Phys Chem 05:71–86.  https://doi.org/10.4236/ojpc.2015.53008 CrossRefGoogle Scholar
  31. 31.
    Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126:084108–084119.  https://doi.org/10.1063/1.2436888 CrossRefPubMedGoogle Scholar
  32. 32.
    Suter HU (1996) Comparison between optimized geometries and vibrational frequencies calculated by the DFT methods. J Phys Chem 3654:15056–15063.  https://doi.org/10.1021/jp960618o CrossRefGoogle Scholar
  33. 33.
    Bach RD, Glukhovtsev MN, Gonzalez C et al (1997) Nature of the transition structure for alkene epoxidation by peroxyformic acid, dioxirane, and dimethyldioxirane: a comparison of B3LYP density functional theory with higher computational levels. J Phys Chem A 101:6092–6100.  https://doi.org/10.1021/jp970378s CrossRefGoogle Scholar
  34. 34.
    Curtiss LA, Raghavachari K, Redfern PC, Pople JA (2000) Assessment of Gaussian-3 and density functional theories for a larger experimental test set. J Chem Phys 112:7374.  https://doi.org/10.1063/1.481336 CrossRefGoogle Scholar
  35. 35.
    Curtiss LA, Redfern PC, Raghavachari K (2005) Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies. J Chem Phys 123:124107–124118.  https://doi.org/10.1063/1.2039080 CrossRefPubMedGoogle Scholar
  36. 36.
    Curtiss LA, Redfern PC, Raghavachari K (2011) Gn theory. Wiley Interdiscip Rev Comput Mol Sci 1:810–825.  https://doi.org/10.1002/wcms.59 CrossRefGoogle Scholar
  37. 37.
    Pereira DH, Ramos AF, Morgon NH, Custodio R (2011) Implementation of pseudopotential in the G3 theory for molecules containing first-, second-, and non-transition third-row atoms. J Chem Phys 135:034106.  https://doi.org/10.1063/1.3609241 CrossRefPubMedGoogle Scholar
  38. 38.
    de Silva CS, Pereira DH, Custodio R (2016) G4CEP: A G4 theory modification by including pseudopotential for molecules containing first-, second- and third-row representative elements. J Chem Phys 144:204118–204126.  https://doi.org/10.1063/1.4952427 CrossRefGoogle Scholar
  39. 39.
    de Silva CS, Custodio R (2018) Empirical corrections in the G3X and G3X(CCSD) theories combined with a compact effective pseudopotential. Theor Chem Acc 137:24.  https://doi.org/10.1007/s00214-018-2206-3 CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, et al. (2009) Gaussian 09 Revision D.01.Google Scholar
  41. 41.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313.  https://doi.org/10.1093/comjnl/7.4.308 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de QuímicaUniversidade Estadual de CampinasSão PauloBrazil

Personalised recommendations