Advertisement

CO2 adsorption in nitrogen-doped single-layered graphene quantum dots: a spectroscopic investigation

  • Pedro H. de Oliveira Neto
  • João P. C. C. Rodrigues
  • Leonardo E. de Sousa
  • Ricardo Gargano
  • Wiliam F. da CunhaEmail author
Original Paper
Part of the following topical collections:
  1. VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol

Abstract

In this work, we investigate the adsorption process of CO2 in graphene quantum dots from the electronic structure and spectroscopic properties point of view. We discuss how a specific doping scheme could be employed to further enhance the adsorbing properties of the quantum dots. This is evaluated by considering the depth of the potential well, the spectroscopic constants, and the lifetime of the compound. Electronic structure calculations are carried out in the scope of the density functional theory (DFT), whereas discrete variable representation (DVR) and Dunham methodologies are employed to obtain spectroscopic constants and hence the lifetimes of the systems. Our results suggest that nitrogen-doped graphene quantum dots are promising structures as far as sensing applications of CO2 are concerned.

Graphical Abstract

Adsorption mechanism of the CO2 molecule in (a) a pristine and (b) a nitrogendoped Graphene Quantum Dot

Keywords

Graphene quantum dots Gas adsorption Nanostructure sensing 

Notes

Acknowledgements

The authors acknowledge the financial support from Brazilian agencies CNPq and FAP-DF. P.H.O.N. and W.F.C. also acknowledge the financial support from FAP-DF grants 0193.001662/2017, and 0193.001694/2017 respectively.

References

  1. 1.
    Ren W, Cheng H (2014) . Nat Nanotechnol 9(10):726CrossRefGoogle Scholar
  2. 2.
    da Cunha WF, Ribeiro LA Jr, Fonseca ALDA, Gargano R, e Silva GM (2014) . J Phys Chem C 118(41):23451CrossRefGoogle Scholar
  3. 3.
    de Oliveira Neto PH, Van Voorhis T (2018) . Carbon 132:352CrossRefGoogle Scholar
  4. 4.
    Paura ENC, da Cunha WF, de Oliveira Neto PH, e Silva GM, Martins JB, Gargano R (2013) . J Phys Chem A 117(13):2854CrossRefGoogle Scholar
  5. 5.
    Manzoli A, Steffens C, Paschoalin RT, Correa AA, Alves WF, Leite FL, Herrmann PS (2011) . Sensors 11(6):6425CrossRefGoogle Scholar
  6. 6.
    Raeyani D, Shojaei S, Kandjani SA, Wlodarski W (2016) . Procedia Eng 168:1312CrossRefGoogle Scholar
  7. 7.
    Lin YC, Lin CY, Chiu PW (2010) . Appl Phys Lett 96(13):133110CrossRefGoogle Scholar
  8. 8.
    Liu H, Liu Y, Zhu D (2011) . J Mater Chem 21(10):3335CrossRefGoogle Scholar
  9. 9.
    Ma L, Hu H, Zhu L, Wang J (2011) . J Phys Chem C 115(14):6195CrossRefGoogle Scholar
  10. 10.
    Gong K, Du F, Xia Z, Durstock M, Dai L (2009) . Science 323(5915):760CrossRefGoogle Scholar
  11. 11.
    Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2011) . J Am Chem Soc 134(1):15CrossRefGoogle Scholar
  12. 12.
    Wolfgang R (1970) . Acc Chem Res 3(2):48CrossRefGoogle Scholar
  13. 13.
    Pitsevich G, Malevich A (2016) . J Appl Spectrosc 82(6):893CrossRefGoogle Scholar
  14. 14.
    Light J, Hamilton I, Lill J (1985) . J Chem Phys 82(3):1400CrossRefGoogle Scholar
  15. 15.
    Dunham J (1932) . Phys Rev 41(6):721CrossRefGoogle Scholar
  16. 16.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Revision B.01. Gaussian Inc., WallingfordGoogle Scholar
  17. 17.
    Maniero AM, Acioli PH (2005) . Int J Quantum Chem 103(5):711CrossRefGoogle Scholar
  18. 18.
    Powell M (1965) . Comput J 7(4):303CrossRefGoogle Scholar
  19. 19.
    da Cunha WF, de Oliveira RM, Roncaratti LF, Martins JB, e Silva GM, R Gargano (2014) . J Mol Model 20(12):2498CrossRefGoogle Scholar
  20. 20.
    Slater N (1939) .. In: Mathematical proceedings of the Cambridge Philosophical Society, vol 35, vol 35. Cambridge University Press, Cambridge, pp 56–69Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of BrasiliaBrasiliaBrazil

Personalised recommendations