Advertisement

Spin polarization in graphene nanoribbons functionalized with nitroxide

  • Vitaly Morozov
  • Evgeny TretyakovEmail author
Original Paper
  • 17 Downloads

Abstract

Fine-tuning of magnetic states via an understanding of spin injection on the edge of graphene nanoribbons should allow for greater flexibility of the design of graphene-based spintronics. On the basis of calculations, we predict that coupling constants of the exchange interaction in the series of nitroxide-functionalized ribbon compounds are antiferromagnetic across the ribbons with values 0.2–0.4 cm−1 and ferromagnetic along the ribbon with absolute values from 0.05 to 0.07 cm−1. Such interacting nitroxide groups induce spin polarization of the edge states of stable graphene nanoribbons.

Graphical abstract

Exchange coupling constants inducing spin polarization in graphene nanoribbons functionalized with nitroxides.

Keywords

Graphene Graphene nanoribbons Molecular magnetism Nitronyl nitroxides Quantum chemical calculations 

Notes

Acknowledgments

This work was financially supported by the Russian Science Foundation (grant 18-13-00173). ET is grateful to Dr. D. Stass for discussions regarding this work.

References

  1. 1.
    Park J-H, Vescovo E, Kim H-J, Kwon C, Ramesh R, Venkatesan T (1998) Direct evidence for a half-metallic ferromagnet. Nature 392:794CrossRefGoogle Scholar
  2. 2.
    Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444:347CrossRefGoogle Scholar
  3. 3.
    Kan E-J, Li Z, Hou JG (2008) Half-metallicity in edge-modified zigzag graphene nanoribbons. J Am Chem Soc 130:4224CrossRefGoogle Scholar
  4. 4.
    Dutta S, Manna AK, Pati SK (2009) Intrinsic half-metallicity in modified graphene nanoribbons. Phys Rev Lett 102:096601CrossRefGoogle Scholar
  5. 5.
    Pruneda JM (2010) Origin of half-semimetallicity induced at interfaces of C-BN heterostructures. Phys Rev B 81:161409CrossRefGoogle Scholar
  6. 6.
    Bhowmick S, Singh AK, Yakobson BI (2011) Vacancy clusters in Graphane as quantum dots. J Phys Chem C 115:9889CrossRefGoogle Scholar
  7. 7.
    Klinovaja J, Loss D (2013) Giant spin-orbit interaction due to rotating magnetic fields in graphene nanoribbons. Phys Rev X 3:011008Google Scholar
  8. 8.
    Hagelberg F, Kaiser A, Sukuba I, Probst M (2017) Spin filter properties of armchair graphene nanoribbons with substitutional Fe atoms. Mol Phys 115:2231CrossRefGoogle Scholar
  9. 9.
    Galashev AE, Rakhmanova OR (2014) Mechanical and thermal stability of graphene and graphene-based materials. Physics-Uspekhi 57:970CrossRefGoogle Scholar
  10. 10.
    Nan HY, Ni ZH, Wang J, Zafar Z, Shia ZX, Wang YY (2013) The thermal stability of graphene in air investigated by Raman spectroscopy. J Raman Spectrosc 44:1018CrossRefGoogle Scholar
  11. 11.
    Chen JH, Jang C, Xiao S, Ishigami M, Furher MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206CrossRefGoogle Scholar
  12. 12.
    Ochoa H, Castro Neto AH, Guinea F (2012) Elliot-Yafet mechanism in graphene. Phys Rev Lett 108:206808CrossRefGoogle Scholar
  13. 13.
    Tombros N, Jozsa C, Popinciuc C, Jonkman HT, van Wees BJ (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448:571Google Scholar
  14. 14.
    Wimmer M, Adagideli I, Berber S, Tomanek D, Richter K (2008) Spin currents in rough graphene nanoribbons: universal fluctuations and spin injection. Phys Rev Lett 100:177207CrossRefGoogle Scholar
  15. 15.
    Jaiswal NK, Srivastava P (2013) Fe-doped armchair graphene nanoribbons for spintronic/interconnect applications. IEEE Trans Nanotech 12:685CrossRefGoogle Scholar
  16. 16.
    Yan S-L, Long M-Q, Zhang X-J, Xu H (2014) The effects of spin-filter and negative differential resistance on Fe-substituted zigzag graphene nanoribbons. Phys Lett A 378:960CrossRefGoogle Scholar
  17. 17.
    Garcia-Fuente A, Gallego LJ, Vega A (2016) Spin-polarized transport in hydrogen-passivated graphene and silicene nanoribbons with magnetic transition-metal substituents. Phys Chem Chem Phys 18:22606CrossRefGoogle Scholar
  18. 18.
    Baldwin JPC, Hancock Y (2013) Effects of strain on notched zigzag graphene nanoribbons. Crystals 3:38CrossRefGoogle Scholar
  19. 19.
    Han W, Kawakami RK, Gmitra M, Fabian J (2014) Graphene spintronics. Nat Nanotechnol 9:794CrossRefGoogle Scholar
  20. 20.
    Pesin D, MacDonald AH (2012) Spintronics and pseudospintronics in graphene and topological insulators. Nat Mater 11:409CrossRefGoogle Scholar
  21. 21.
    Yazyev OV (2010) Emergence of magnetism in graphene materials and nanostructures. Rep Prog Phys 73:056501CrossRefGoogle Scholar
  22. 22.
    Wu J, Hagelberg F (2013) Impact of tube curvature on the ground-state magnetism of axially confined single-walled carbon nanotubes of the zigzag-type. ChemPhysChem 14:1696CrossRefGoogle Scholar
  23. 23.
    Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Müllen K, Fasel R (2016) On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531:489CrossRefGoogle Scholar
  24. 24.
    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470CrossRefGoogle Scholar
  25. 25.
    Yang X, Dou X, Rouhanipour A, Zhi L, Räder HJ, Müllen K (2008) Two-dimensional graphene nanoribbons. J Am Chem Soc 130:4216CrossRefGoogle Scholar
  26. 26.
    Schwab MG, Schwab G, Narita A, Hernandez Y, Balandina T, Mali KS, Feyter SD, Feng X, Müllen K (2012) Structurally defined graphene nanoribbons with high lateral extension. J Am Chem Soc 134:18169CrossRefGoogle Scholar
  27. 27.
    Narita A, Feng X, Hernandez Y, Jensen SA, Bonn M, Yang H, Verzhbitskiy IA, Casiraghi C, Hansen MR, Koch AH, Fytas G, Ivasenko O, Li B, Mali KS, Balandina T, Mahesh S, De Feyter S, Müllen K (2014) Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat Chem 6:126Google Scholar
  28. 28.
    Narita A, Wang X-Y, Feng X, Müllen K (2015) New advances in nanographene chemistry. Chem Soc Rev 44:6616CrossRefGoogle Scholar
  29. 29.
    Konnerth R, Cervetti C, Narita A, Feng X, Müllen K, Hoyer A, Burghard M, Kern K, Dressel M, Bogani L (2015) Tuning the deposition of molecular graphene nanoribbons by surface functionalization. Nanoscale 7:12807CrossRefGoogle Scholar
  30. 30.
    Keerthi A, Radha B, Rizzo D, Lu H, Cabanes VD, Hou IC-Y, Beljonne D, Cornil J, Casiraghi C, Baumgarten M, Müllen K, Narita A (2017) Edge functionalization of structurally defined graphene nanoribbons for modulating the self-assembled structures. J Am Chem Soc 139:16454CrossRefGoogle Scholar
  31. 31.
    Slota M, Keerthi A, Myers WK, Tretyakov E, Baumgarten M, Ardavan A, Sadeghi H, Lambert CJ, Narita A, Müllen K, Bogani L (2018) Magnetic edge states and coherent manipulation of graphene nanoribbons. Nature 557:691CrossRefGoogle Scholar
  32. 32.
    Stass D, Tretyakov E (2019) Estimation of absolute spin counts in nitronyl nitroxide-bearing graphene nanoribbons. J Appl Magn Res, submittedGoogle Scholar
  33. 33.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502Google Scholar
  34. 34.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188CrossRefGoogle Scholar
  35. 35.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57:1505CrossRefGoogle Scholar
  36. 36.
    Morozov VA, Petrova MV, Lukzen NN (2015) Exchange coupling transformations in cu (II) heterospin complexes of “breathing crystals” under structural phase transitions. AIP Adv 5:087161CrossRefGoogle Scholar
  37. 37.
    Streltsov SV, Petrova MV, Morozov VA, Romanenko GV, Anisimov VI, Lukzen NN (2013) Interplay between lattice, orbital, and magnetic degrees of freedom in the chain-polymer cu(II) breathing crystals. Phys Rev B 87:024425CrossRefGoogle Scholar
  38. 38.
    Yamaguchi K, Fukui H, Fueno T (1986) Molecular orbital (MO) theory for magnetically interacting organic compounds. Ab-initio MO calculations of the effective exchange integrals for cyclophane-type carbene dimers. Chem Lett 15:625CrossRefGoogle Scholar
  39. 39.
    Luis F, Coronado E (2018) Spinning on the edge of graphene. Nature 557:645CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.International Tomography CenterNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.N. N. Vorozhtsov Institute of Organic ChemistryNovosibirskRussia

Personalised recommendations