Advertisement

Exploring the mechanism of alkene hydrogenation catalyzed by defined iron complex from DFT computation

  • Cai-Hong GuoEmail author
  • Dandan Yang
  • Xiaoyan Liu
  • Xiang Zhang
  • Haijun JiaoEmail author
Original Paper
Part of the following topical collections:
  1. Tim Clark 70th Birthday Festschrift

Abstract

UB3LYP computation including dispersion and toluene solvation has been carried to elucidate the mechanisms of alkene hydrogenation catalyzed by bis(imino)pyridine iron dinitrogen complex (iPrPDI)Fe(N2)2, which has low stability towards N2 dissociation. The coordinatively unsaturated complexes, (iPrPDI)Fe(N2) and (iPrPDI)Fe(1-C4H8), favor open-shell singlet ground states. On the basis of our computations, we propose a new mechanism of 1-butene coordination and hydrogenation after N2 dissociation. The hydrogenation of 1-butene undergoes a concerted open-shell singlet transition state involving H2 dissociation, C-H bond formation and C=C bond elongation, as well as the subsequent C-H reductive elimination. In the whole alkene hydrogenation, the H-H bond cleavage is the rate-determining step.

Graphical abstract

The alkene hydrogenation catalyzed by redox-active pyridine(diimine)-chelate iron complex follows the open-shell singlet state path

Keywords

Alkene hydrogenation Fe complexes DFT Mechanism Homogeneous catalysis 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21203115 and 21373131) and the Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2012-057). We thank Dr. Ling Guo and Dr. Bingqiang Wang for helpful discussions. This work was also supported in part by Computer resources at the National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

894_2019_3942_MOESM1_ESM.doc (2 mb)
ESM 1 (DOC 2041 kb)

References

  1. 1.
    Blaser H-U, Spindler F, Thommen M (2008) The handbook of homogeneous hydrogenation. de Vries JG, Elsevier CJ (eds) Wiley-VCH: WeinheimGoogle Scholar
  2. 2.
    Cipot J, McDonald R, Stradiotto M (2006) Organometallics 25:29–31CrossRefGoogle Scholar
  3. 3.
    Hesp KD, Wechsler D, Cipot J, Myers A, McDonald R, Ferguson MJ, Schatte G, Stradiotto M (2007) Organometallics 26:5430–5437CrossRefGoogle Scholar
  4. 4.
    Alvarez A, Maclas R, Bould J, Fabra MJ, Lahoz FJ, Oro LA (2008) J Am Chem Soc 130:11455–11466CrossRefGoogle Scholar
  5. 5.
    Chirik PJ (2015) Acc Chem Res 48:1687–1695CrossRefGoogle Scholar
  6. 6.
    Li L, Zhao H, Wang R (2015) ACS Catal 5:948–955CrossRefGoogle Scholar
  7. 7.
    Osborn JA, Wilkinson G, Young JF (1965) Chem Commun 17Google Scholar
  8. 8.
    Osborn JA, Jardine FH, Young JF, Wilkinson G (1966) J Chem Soc A 1711–1732Google Scholar
  9. 9.
    Schrock RR, Osborn JA (1971) J Am Chem Soc 93:3091–3092CrossRefGoogle Scholar
  10. 10.
    Crabtree RH (1979) Acc Chem Res 12:331–337CrossRefGoogle Scholar
  11. 11.
    Knowles WS (2002) Angew Chem Int Ed 41:1998–2007CrossRefGoogle Scholar
  12. 12.
    Noyori R (2002) Angew Chem Int Ed 41:2008–2022CrossRefGoogle Scholar
  13. 13.
    Sperger T, Sanhueza IA, Kalvet I, Schoenebeck F (2015) Chem Rev 115:9532–9586CrossRefGoogle Scholar
  14. 14.
    Bolm C, Legros J, Le Paih J, Zani L (2004) Chem Rev 104:6217–6254CrossRefGoogle Scholar
  15. 15.
    Bauer I, Knölker H-J (2015) Chem Rev 115:3170–3387CrossRefGoogle Scholar
  16. 16.
    Small BL, Brookhart M, Bennett AMA (1998) J Am Chem Soc 120:4049–4050CrossRefGoogle Scholar
  17. 17.
    Britovsek GJP, Bruce M, Gibson VC, Kimberley BS, Maddox PJ, Mastroianni S, McTavish SJ, Redshaw C, Solan GA, Strömberg S, White AJP, Williams DJ (1999) J Am Chem Soc 121:8728–8740CrossRefGoogle Scholar
  18. 18.
    Knijnenburg Q, Horton AD, van der Heijden H, Kooistra TM, Hetterscheid DGH, Smits JMM, de Bruin B, Budzelaar PHM, Gal AW (2005) J Mol Catal A Chem 232:151–159CrossRefGoogle Scholar
  19. 19.
    Bart SC, Lobkovsky E, Chirik PJ (2004) J Am Chem Soc 126:13794–13807CrossRefGoogle Scholar
  20. 20.
    Archer AM, Bouwkamp MW, Cortez MP, Lopkovsky E, Chirik PJ (2006) Organometallics 25:4269–4278CrossRefGoogle Scholar
  21. 21.
    Bart SC, Lobkovsky E, Bill E, Chirik PJ (2006) J Am Chem Soc 128:5302–5303CrossRefGoogle Scholar
  22. 22.
    Trovitch RJ, Lopkovsky E, Bill E, Chirik PJ (2008) Organometallics 27:1470–1478CrossRefGoogle Scholar
  23. 23.
    Russell SK, Darmon JM, Lopkovsky E, Chirik PJ (2010) Inorg Chem 49:2782–2792CrossRefGoogle Scholar
  24. 24.
    Tondreau AM, Atienza CCH, Weller KJ, Nye SA, Lewis KM, Delis JGP, Chirik PJ (2012) Science 335:567–570CrossRefGoogle Scholar
  25. 25.
    Ward MD, McCleverty JA (2002) J Chem Soc Dalton Trans 275Google Scholar
  26. 26.
    Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145CrossRefGoogle Scholar
  27. 27.
    Bellows SM, Cundari TR, Holland PL (2013) Organometallics 32:4741–4751CrossRefGoogle Scholar
  28. 28.
    Trovitch RJ, Lobkovsky E, Chirik PJ (2008) J Am Chem Soc 130:11631–11640CrossRefGoogle Scholar
  29. 29.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  30. 30.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  31. 31.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  32. 32.
    Khoroshun DV, Musaev DG, Vreven T, Morokuma K (2001) Organometallics 20:2007–2026CrossRefGoogle Scholar
  33. 33.
    Sharon DA, Mallick D, Wang B, Shaik S (2016) J Am Chem Soc 138:9597–9610CrossRefGoogle Scholar
  34. 34.
    Long GT, Weitz E (2000) J Am Chem Soc 122:1431–1442CrossRefGoogle Scholar
  35. 35.
    Glascoe EA, Sawyer KR, Shanoski JE, Harris CB (2007) J Phys Chem C 111:8789–8795CrossRefGoogle Scholar
  36. 36.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  37. 37.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  38. 38.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222CrossRefGoogle Scholar
  39. 39.
    Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161CrossRefGoogle Scholar
  40. 40.
    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527CrossRefGoogle Scholar
  41. 41.
    Bachler V, Olbrich G, Neese F, Wieghardt K (2002) Inorg Chem 41:4179–4193CrossRefGoogle Scholar
  42. 42.
    Cheng L, Wang J, Wang M, Wu Z (2009) Dalton Trans 3286–3297Google Scholar
  43. 43.
    Peng D, Zhang Y, Du X, Zhang L, Leng X, Walter MD, Huang Z (2013) J Am Chem Soc 135:19154–19166CrossRefGoogle Scholar
  44. 44.
    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746CrossRefGoogle Scholar
  45. 45.
    Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681CrossRefGoogle Scholar
  46. 46.
    Miertus S, Scrocco E, Tomasi J (1981) J Chem Phys 55:117–129Google Scholar
  47. 47.
    Miertus S, Tomasi J (1982) J Chem Phys 65:239–245Google Scholar
  48. 48.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  49. 49.
    Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465CrossRefGoogle Scholar
  50. 50.
    Winget P, Cramer CJ, Truhlar DG (2004) Theor Chem Accounts 112:217–227CrossRefGoogle Scholar
  51. 51.
    Seeger R, Pople JA (1977) J Chem Phys 66:3045–3050CrossRefGoogle Scholar
  52. 52.
    Bauernschmitt R, Ahlrichs R (1996) J Chem Phys 104:9047–9052CrossRefGoogle Scholar
  53. 53.
    Yamaguchi K, Jensen F, Dorigo A, Houk KN (1988) Chem Phys Lett 149:537–542CrossRefGoogle Scholar
  54. 54.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Camii R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ӧ, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision E.01. Gaussian, Inc., WallingfordGoogle Scholar
  55. 55.
    Stieber SCE, Milsmann C, Hoyt JM, Turner ZR, Finkelstein KD, Wieghardt K, DeBeer S, Chirik PJ (2012) Inorg Chem 51:3770–3785CrossRefGoogle Scholar
  56. 56.
    Booth CH, Walter MD, Kazhdan D, Hu Y-J, Lukens WW, Bauer ED, Maron L, Eisenstein O, Andersen RA (2009) J Am Chem Soc 131:6480–6491CrossRefGoogle Scholar
  57. 57.
    Smith KM, Poli R, Harvey JN (2000) New J Chem 24:77–80CrossRefGoogle Scholar
  58. 58.
    Harvey JN (2004) Faraday Discuss 127:165–177CrossRefGoogle Scholar
  59. 59.
    Ganguly G, Malakar T, Paul A (2015) ACS Catal 5:2754–2769CrossRefGoogle Scholar
  60. 60.
    Ortuño MA, Cramer CJ (2017) J Phys Chem A 121:5932–5939CrossRefGoogle Scholar
  61. 61.
    Trovitch RJ, Lobkovsky E, Chirik RJ (2006) Inorg Chem 45:7252–7260CrossRefGoogle Scholar
  62. 62.
    Gorgas N, Alves LG, Stöger B, Martins AM, Veiros LF, Kirchner K (2017) J Am Chem Soc 139:8130–8133CrossRefGoogle Scholar
  63. 63.
    Yu RP, Darmon JM, Semproni SP, Turner ZR, Chirik PJ (2017) Organometallics 36:4341–4343CrossRefGoogle Scholar
  64. 64.
    Dub PA, Gordon JC (2017) ACS Catal 7:6635–6655CrossRefGoogle Scholar
  65. 65.
    Polo V, Al-Saadi AA, Oro LA (2014) Organometallics 33:5156–5163CrossRefGoogle Scholar
  66. 66.
    Hoyt JM, Sylvester KT, Semproni SP, Chirkik PJ (2013) J Am Chem Soc 135:4862–4877CrossRefGoogle Scholar
  67. 67.
    Tondreau AM, Atienza CCH, Darmon JM, Milsmann C, Hoyt HM, Weller KJ, Nye SA, Lewis KM, Boyer J, Delis JGP, Lobkovsky E, Chirik PJ (2012) Organometallics 31:4886–4893CrossRefGoogle Scholar
  68. 68.
    Li L, Lei M, Sakaki S (2017) Organometallics 36:3530–3538CrossRefGoogle Scholar
  69. 69.
    Poli R, Harvey JN (2003) Chem Soc Rev 32:1–8CrossRefGoogle Scholar
  70. 70.
    Ozawa F, Hikida T, Hayashi T (1994) J Am Chem Soc 116:2844–2849CrossRefGoogle Scholar
  71. 71.
    Sakaki S, Mizoe N, Sugimoto M, Musashi Y (1999) Coord Chem Rev 190:933–960CrossRefGoogle Scholar
  72. 72.
    Sakaki S, Sumimoto M, Fukuhara M, Sugimoto M, Fujimoto H, Matsuzaki S (2002) Organometallics 21:3788–3802CrossRefGoogle Scholar
  73. 73.
    Cheng C, Kim BG, Guironnet D, Brookhart M, Guan CJ, Wang DY, Krogh-Jespersen K, Goldman AS (2014) J Am Chem Soc 136:6672–6683CrossRefGoogle Scholar
  74. 74.
    Tao JC, Sun FS, Fang T (2012) J Org Chem 698:1–6CrossRefGoogle Scholar
  75. 75.
    Harrod JF, Chalk AJ (1964) J Am Chem Soc 86:1776–1779CrossRefGoogle Scholar
  76. 76.
    Harrod JF, Chalk AJ (1966) J Am Chem Soc 88:3491–3497CrossRefGoogle Scholar
  77. 77.
    Davies NR (1964) Nature 201:490–491CrossRefGoogle Scholar
  78. 78.
    Davies NR (1964) Aust J Chem 17:212–218CrossRefGoogle Scholar
  79. 79.
    Sawyer KR, Glascoe EA, Cahoon JF, Schlegel JP, Harris CB (2008) Organometallics 27:4370–4379CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material ScienceShanxi Normal UniversityLinfenChina
  2. 2.Leibniz-Institut für Katalyse e.V. an der Universität RostockRostockGermany

Personalised recommendations