A theoretical exploration of the intermolecular interactions between resveratrol and water: a DFT and AIM analysis

  • A. SuvithaEmail author
  • N. S. VenkataramananEmail author
  • R. Sahara
  • Y. Kawazoe
Original Paper


The polyphenolic compound resveratrol, classified under stilbenes, offers a broad range of health advantages, including neuroprotection and playing a role in autophagy in the nervous system. However, resveratrol has poor water solubility and is soluble in the gel phase in liposomal membranes. The main aim of this work was to understand the nature of the interactions between resveratrol and water molecules. In the present study, we used the dispersion corrected density functional theory (DFT) method to study hydrogen bonding interactions. Eight different geometries of resveratrol-water complexes were identified by optimizing the geometries by placing water at various locations. We observed the two lowest energy structures to be isoenergetic. In most complexes, water interaction occurs with phenolic hydrogen as all the phenolic hydroxyl groups have identical Vs,max values. Energy decomposition analysis shows that the dispersion contribution was minimal in these complexes, while electrostatic and orbital contributions were larger. Complex formation between water and the resveratrol molecule results in a blue shift in the vibrational frequency, along with an increase in intensity due to the transfer of electron density. The hydrogen bonds in the resveratrol–water complexes have closed-shell interactions with a medium-to-strong bonding nature. Noncovalent index analysis of the complexes shows that, in addition to hydrogen bonding, electrostatic and van der Waal’s interactions play a key role in stabilizing the complexes.

Graphical abstract

Noncovalent index analysis showing that, in addition to hydrogen bonding, electrostatic and van der Waal’s interactions play a major role in stabilizing resveratrol-water complexes


Alkaloids DFT Extraction H-bonding Water 



N.S.V. thanks Science and Engineering Research Board-Department of Science and Technology (SERB-DST), India for funding through a project (EMR-II-SB/S1/PC-047/2013).

Supplementary material

894_2019_3941_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)


  1. 1.
    Corrêa RCG, Peralta RM, Haminiuk CWI, Maciel GM, Bracht A, Ferreia ICFR (2018) Crit Rev Food Sci Nutr 58:942PubMedGoogle Scholar
  2. 2.
    Akinwumi BC, Bordun K-AM, Anderson HD (2018) Int J Mol Sci 19:792PubMedCentralGoogle Scholar
  3. 3.
    Zhao J, Davis LC, Verpoorte R (2005) Biotechnol Adv 23:283PubMedGoogle Scholar
  4. 4.
    Oliviero F, Scanu A, Zamudio-Cuevas Y, Punzi L, Spinella P (2017) J Sci Food Agric 98:1653PubMedGoogle Scholar
  5. 5.
    Salucci S, Burattini S, Giordano FM, Lucarini S, Diamantini G, Falcieri E (2017) J Med Food 20:410PubMedGoogle Scholar
  6. 6.
    Ko J-H, Sethi G, Um J-Y, Shanmugam MK, Arfuso F, Kumar AP, Bishayee A, Ahn KS (2017) Int J Mol Sci 18:2589PubMedCentralGoogle Scholar
  7. 7.
    Fei Q, Kent D, Botello-Smith WM, Nur F, Nur S, Alsamarah A, Chatterjee P, Lambros M, Luo Y (2018) Sci Rep 8:1587PubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhao H, Chen S, Gao K, Zhou Z, Wang C, Shen Z, Guo Y, Li Z, Wan Z, Liu C, Mei X (2017) Neuroscience 348:241PubMedGoogle Scholar
  9. 9.
    Ahmed T, Javed S, Javed S, Tariq A, Šamec D, Tejada S, Nabavi SF, Braidy N, Nabavi SM (2017) Mol Neurobiol 54:2622PubMedGoogle Scholar
  10. 10.
    Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA (2017) Plants 6:42PubMedCentralGoogle Scholar
  11. 11.
    Mena P, Carlini M, Tassotti M, Herrlinger KA, Dall’Asta C, Rio DD (2016) Molecules 21:1576PubMedCentralGoogle Scholar
  12. 12.
    Li X-Z, Walker B, Michaelides A (2011) Proc Natl Acad Sci U S A 108:6369PubMedCentralGoogle Scholar
  13. 13.
    Giberti F, Hassanali AA, Ceriotti M, Parrinello M (2014) J Phys Chem B 118:13226PubMedGoogle Scholar
  14. 14.
    McKenzie RH, Bekker C, Athokpam B, Ramesh SG (2014) J Chem Phys 140:174508PubMedGoogle Scholar
  15. 15.
    Ceriotti M, Fang W, Kusalik PG, McKenzie RH, Michaelides A, Morales MA, Markland TE (2016) Chem Rev 116:7529PubMedGoogle Scholar
  16. 16.
    Raugei S, Klein ML (2003) J Am Chem Soc 125:8992PubMedGoogle Scholar
  17. 17.
    Wilkins DM, Manolopoulos DE, Pipolo S, Laage D, Hynes JT (2017) J Phys Chem Lett 8:2602PubMedGoogle Scholar
  18. 18.
    Sappati S, Hassanali A, Gebauer R, Ghosh P (2016) J Chem Phys 145:205102PubMedGoogle Scholar
  19. 19.
    Bonechi C, Martini S, Ciani L, Lamponi S, Rebmann H, Rossi C, Ristori S (2012) PLoS One 7:e41438PubMedPubMedCentralGoogle Scholar
  20. 20.
    de Ghellinck A, Shen C, Fragneto G, Klösgen B (2015) Colloids Surf B: Biointerfaces 134:65PubMedGoogle Scholar
  21. 21.
    Neves AR, Nunes C, Amenitsch H, Reis S (2016) Soft Matter 12:2118PubMedGoogle Scholar
  22. 22.
    Wesołowska O, Kuzdzał M, Strancar J, Michalak K (2009) Biochim Biophys Acta 1788:1851PubMedGoogle Scholar
  23. 23.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JJE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Star-overov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Strat-mann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian G09, Revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
  24. 24.
    Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215Google Scholar
  25. 25.
    Venkataramanan NS (2016) J Mol Model 22:151PubMedGoogle Scholar
  26. 26.
    Sedlak R, Janowski T, Pitoňák M, Řezáč J, Pulay P, Hobza P (2013) J Chem Theory Comput 9(2013):3364PubMedPubMedCentralGoogle Scholar
  27. 27.
    Simon M, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024Google Scholar
  28. 28.
    Boys SF, Bernardi F (1970) Mol Phys 19:553Google Scholar
  29. 29.
    Venkataramanan NS, Suvitha A (2017) J Incl Phenom Macrocycl Chem 88:53Google Scholar
  30. 30.
    Weinhold F, Carpenter JE (1988) The structure of small molecules and ions. In: Naaman R, Vager Z (eds) Plenum, New York, pp 227–236Google Scholar
  31. 31.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899Google Scholar
  32. 32.
    Venkataramanan NS, Suvitha A, Kawazoe Y (2017) J Mol Graph Model 78:48PubMedGoogle Scholar
  33. 33.
    Venkataramanan NS, Suvitha A (2018) J Mol Graph Model 81:50PubMedGoogle Scholar
  34. 34.
    (2017) AIMAll (Version 17.01.25), Todd A. Keith, TK Gristmill Software, Overland Park KS, USAGoogle Scholar
  35. 35.
    Venkataramanan NS, Suvitha A (2017) J Phys Chem B 121:4733PubMedGoogle Scholar
  36. 36.
    Venkataramanan NS, Suvitha A, Kawazoe Y (2018) J Mol Liq 249:454Google Scholar
  37. 37.
    Politzer P, Lane P, Murray JS (2016) Crystals 6:7Google Scholar
  38. 38.
    Politzer P, Murray JS (2002) Theor Chem Accounts 108:134Google Scholar
  39. 39.
    Makarewicz E, Gordon AJ, Mierzwicki K, Latajka Z, Berski S (2014) J Phys Chem A 118:3980PubMedGoogle Scholar
  40. 40.
    Swalina C, Wang Q, Chakraborty A, Hammes-Schiffer S (2007) J Phys Chem A 111:2206PubMedGoogle Scholar
  41. 41.
    Zhang J, Chen P, Yuan B, Ji W, Cheng Z, Qiu X (2013) Science 342:611PubMedGoogle Scholar
  42. 42.
    von Hopffgarten M, Frenking G (2012) WIREs Comput Mol Sci 2:43Google Scholar
  43. 43.
    Zheng Y-Z, Zhou Y, Liang Q, Chen D-F, Guo R (2016) J Mol Model 22:257PubMedGoogle Scholar
  44. 44.
    Zheng Y-Z, Xu J, Liang Q, Chen D-F, Guo R, Fu Z-M (2017) J Mol Model 23:245PubMedGoogle Scholar
  45. 45.
    McDowell SAC, Buckingham AD (2005) J Am Chem Soc 127:15515PubMedGoogle Scholar
  46. 46.
    Raghavendra B, Mandal PK, Arunan E (2006) Phys Chem Chem Phys 8:5276PubMedGoogle Scholar
  47. 47.
    Özsoy H, Uras-Aytemiz N, Blaci F (2018) J Mol Model 24:23Google Scholar
  48. 48.
    Esrafili MD, Sadr-Mousavi A (2018) Chem Phys Lett 698:1Google Scholar
  49. 49.
    Lande DN, Bhadane SA, Gejji SP (2017) J Phys Chem A 121:1814PubMedGoogle Scholar
  50. 50.
    Clark T, Murray JS, Politzer P (2018) Phys Chem Chem Phys 20:30076PubMedGoogle Scholar
  51. 51.
    Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748PubMedGoogle Scholar
  52. 52.
    Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) J Mol Model 18:541PubMedGoogle Scholar
  53. 53.
    Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178PubMedGoogle Scholar
  54. 54.
    Politzer P, Murray JS, Clark T, Resnati G (2017) Phys Chem Chem Phys 19:32166PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, School of Chemical and Biotechnology (SCBT)SASTRA Deemed to be UniversityThanjavurIndia
  2. 2.Research Center for Structural MaterialsNational Institute for Materials Science (NIMS)TsukubaJapan
  3. 3.New Industry Creation Hatchery CenterTohoku UniversitySendaiJapan

Personalised recommendations