Advertisement

A DFT-based study of the hydrogen-bonding interactions between myricetin and ethanol/water

  • Yan-Zhen Zheng
  • Geng Deng
  • Rui Guo
  • Da-Fu ChenEmail author
  • Li-Ming WuEmail author
Original Paper

Abstract

Flavonoids are vital constituents of propolis that are responsible for its medicinal activity. Flavonoid extraction commonly employs ethanol and water as solvents. In the extraction reaction, hydrogen-bonding interactions play a crucial role. In this study, hydrogen-bonding interactions between myricetin—an abundant flavonoid in propolis—and ethanol or water were studied theoretically using density functional theory (DFT) methods. The molecular geometry and charge properties of the myricetin monomer were analyzed first. After careful optimization, nine stable myricetin−CH3CH2OH/H2O complex geometries were obtained. Hydrogen bonds were confirmed to exist in these optimized structures. The most stable structures were found to be those with hydrogen bonds involving the hydrogen atoms of hydroxyl groups and the oxygen atom of the keto group of myricetin. The characteristics of the hydrogen-bonding interactions in the optimized structures were carefully analyzed. The hydrogen bonds in the optimized geometries were shown to be closed-shell-type interactions. H5′ in ring B of myricetin presented the strongest interaction. The hydrogen bonds were found to be Coulombic interactions. Those between the hydrogen atoms of the hydroxyl groups in myricetin and the oxygen atoms in CH3CH2OH and H2O were of moderate strength and had some covalent character, while the others were weak and were dominantly electrostatic in character.

Keywords

Flavonoid Myricetin Hydrogen bond Density functional theory Atoms in molecules 

Notes

Acknowledgments

This work was supported by the Earmarked Fund for China Agriculture Research System (CARS-44-KXJ7), the Open Foundation of Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, China (2017MFNZS05), and the Fujian Agriculture and Forestry University Foundation for Excellent Youth Teachers (xjq201715).

References

  1. 1.
    Banskota AH, Tezuka Y, Prasain JK, Saiki I, Kadota S (1998) J Nat Prod 61:896Google Scholar
  2. 2.
    Marcucci MC (1995) Apidologie 26:83Google Scholar
  3. 3.
    Burdock GA (1998) Food Chem Toxicol 36:347Google Scholar
  4. 4.
    Daugsch A, Moraes CS, Fort P et al (2008) Evid Based Complement Alternat Med 5:435Google Scholar
  5. 5.
    Merino N, González R, González A et al (1996) Arch Med Res 27:285Google Scholar
  6. 6.
    Sroka Z, Żbikowska B, Hładyszowski J (2015) J Mol Model 21:1Google Scholar
  7. 7.
    Scheiner S (1997) Hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  8. 8.
    Arunan E, Desiraju GR, Klein RA et al (2011) Pure Appl Chem 83:1637Google Scholar
  9. 9.
    Jeffrey GA, Saenger W (2012) Hydrogen bonding in biological structures. Springer, BerlinGoogle Scholar
  10. 10.
    Deechongkit S, Dawson PE, Kelly JW (2004) J Am Chem Soc 126:16762Google Scholar
  11. 11.
    Zhao GJ, Han KL (2008) ChemPhysChem 9:1842Google Scholar
  12. 12.
    Henry M (2002) ChemPhysChem 3:607Google Scholar
  13. 13.
    Stockton WB, Rubner MF (1997) Macromolecules 30:2717Google Scholar
  14. 14.
    Dore JC, Teixeira J (1991) Hydrogen-bonded liquids. Kluwer, BostonGoogle Scholar
  15. 15.
    Dong K, Zhang SJ, Wang JJ (2016) Chem Commun 52:6744Google Scholar
  16. 16.
    Lee SH, Doherty TV, Linhardt RJ et al (2009) Biotechnol Bioeng 102:1368Google Scholar
  17. 17.
    Scheller S, Gazda G, Pietsz G et al (1998) Pharmacol Res Commun 20:323Google Scholar
  18. 18.
    Scheller S, Wilczok T, Imielski S et al (1990) Int J Radiat Biol 57:461Google Scholar
  19. 19.
    Barbarić M, Mišković K, Bojić M et al (2011) J Ethnopharmacol 135:772Google Scholar
  20. 20.
    Basnet P, Matsushige K, Hase K et al (1996) Biol Pharm Bull 19:1479Google Scholar
  21. 21.
    Nagai T, Inoue R, Inoue H et al (2003) Food Chem 80:29Google Scholar
  22. 22.
    Huang S, Zhang CP, Wang K (2014) Molecules 19:19610Google Scholar
  23. 23.
    DeToma AS, Choi JS, Braymer JJ et al (2011) ChemBioChem 12:1198Google Scholar
  24. 24.
    Chobot V, Hadacek F (2011) Redox Rep 16:242Google Scholar
  25. 25.
    Oliveira BG, Lima MCA, Pitta IR et al (2010) J Mol Model 16:119Google Scholar
  26. 26.
    Oliveira BG, Araújo RCMU, Carvalho AB et al (2009) J Mol Model 15:123Google Scholar
  27. 27.
    Clark T, Hennemann M, Murray JS et al (2007) J Mol Model 13:291Google Scholar
  28. 28.
    Li QZ, Lin QQ, Li WZ et al (2008) ChemPhysChem 9:2265Google Scholar
  29. 29.
    Zheng YZ, Zhou Y, Liang Q, Chen DF, Guo R (2016) J Mol Model 22:257Google Scholar
  30. 30.
    Li QZ, Wu GS, Yu ZW (2006) J Am Chem Soc 128:1438Google Scholar
  31. 31.
    Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215Google Scholar
  32. 32.
    Dega-Szafran Z, Katrusiak A, Szafran M (2006) J Mol Struct 785:160Google Scholar
  33. 33.
    Ireta J, Neugebauer J, Scheffler M (2004) J Phys Chem A 108:5692Google Scholar
  34. 34.
    Köddermann T, Wertz C, Heintz A et al (2006) ChemPhysChem 7:1944Google Scholar
  35. 35.
    Knorr A, Ludwig R (2015) Sci Rep 5:17505Google Scholar
  36. 36.
    Zheng YZ, Zhou Y, Liang Q, Chen DF, Guo R (2016) J Mol Model 22:95Google Scholar
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision B.01. Gaussian Inc., WallingfordGoogle Scholar
  38. 38.
    Boys SF, Bernardi F (1970) Mol Phys 19:553Google Scholar
  39. 39.
    Politzer P, Murray JS (2013) ChemPhysChem 14:278Google Scholar
  40. 40.
    Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748Google Scholar
  41. 41.
    Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon, OxfordGoogle Scholar
  42. 42.
    Lu T, Chen F (2012) J Comput Chem 33:580Google Scholar
  43. 43.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899Google Scholar
  44. 44.
    Murray JS, Politzer P (2017) WIREs Comput Mol Sci 7:e1326Google Scholar
  45. 45.
    Politzer P, Murray JS (2002) Theor Chem Accounts 108:134Google Scholar
  46. 46.
    Pauling L (1960) The nature of the chemical bond. Cornell University Press, New YorkGoogle Scholar
  47. 47.
    Roohi H, Nowroozi AR, Anjomshoa E (2011) Comput Theor Chem 965:211Google Scholar
  48. 48.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154Google Scholar
  49. 49.
    Pacios LF (2004) J Phys Chem A 108:1177Google Scholar
  50. 50.
    Politzer PJ, Murray S, Clark T (2015) J Mol Model 21:52Google Scholar
  51. 51.
    Clark T, Murray JS, Politzer P (2018) Phys Chem Chem Phys 20:30076.  https://doi.org/10.1039/c8cp06786d

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Pollinating Insect BiologyMinistry of Agriculture and Rural AffairsBeijingPeople’s Republic of China
  2. 2.College of Bee ScienceFujian Agriculture and Forestry UniversityFuzhouPeople’s Republic of China
  3. 3.Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations