Advertisement

Effect of external electric field on C–X ··· π halogen bonds

  • Ahmet TokatlıEmail author
  • Fatmagül Tunç
  • Fatih Ucun
Original Paper
  • 18 Downloads

Abstract

In this study, ab initio calculations (RI-MP2(full)/aug-cc-pVDZ) are performed to investigate the effect of an external electric field (EEF) on the nature, properties, and structures of C–X ··· π halogen bonds in CF3Br complexes with π systems (benzene, ethene, and ethyne), for the first time. This EEF effect is analyzed by a myriad of methods, including molecular electrostatic potential (MEP), symmetry adapted perturbation theory (SAPT), natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM), and noncovalent interaction (NCI) methods. A linear relationship is found between RI-MP2 interaction energy and the strength of the EEF, indicating that the stability of C–X ··· π halogen bonds is sensitive to both the strength and direction of the EEF. According to the SAPT analyses, when the EEF is applied along the +z direction (perpendicular to the π plane), the nature of C–X ··· π halogen bonds transforms gradually from dispersion to electrostatic for the CF3Br ··· benzene complex and from electrostatic to more electrostatic for the other complexes. However, when the EEF is applied along the –z direction, the C–X ··· π halogen bonds in all the complexes tend to be more dispersive in nature. The QTAIM analysis exhibits that the CF3Br ··· benzene complex under the EEF with strength < 0.005 au is formed by the C–X ··· πC3 and C–X ··· πring halogen bonds, while it has only the C–X ··· πC3 halogen bond when the strength of the EEF is > 0.005 au. The structural results of the studied complexes show an inverse dependence of intermolecular distance between the CF3Br and π system on the strength of the EEF.

Keywords

C–X ··· π halogen bonds External electric field MEP SAPT QTAIM 

Notes

Acknowledgments

This work was supported by Unit of Scientific Research Projects of Süleyman Demirel University (Project No: 4600-D2-16).

Supplementary material

894_2019_3938_MOESM1_ESM.docx (375 kb)
ESM 1 (DOCX 375 kb)

References

  1. 1.
    Nguyen HL, Horton PN, Hursthouse MB, Legon AC, Bruce DW (2004) J Am Chem Soc 126:16PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Aakeroy CB, Fasulo M, Schultheiss N, Desper J, Moore C (2007) J Am Chem Soc 129:13772PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lu Y, Wang Y, Zhu W (2010) Phys Chem Chem Phys 12:4543PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Riley KE, Hobza P (2013) Acc Chem Res 46:927PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Yang X, Gan L, Han L, Wang E, Wang J (2013) Angew Chem Int Ed Eng 52:2022CrossRefGoogle Scholar
  6. 6.
    Poznanski J, Shugar D (2013) Biochim Biophys Acta 1834:1381PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci U S A 101:16789PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Voth AR, Hays FA, Ho PS (2007) Proc Natl Acad Sci U S A 104:6188PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Gilday LC, Robinson SW, Barendt TA, Langton MJ, Mullaney BR, Beer PD (2015) Chem Rev 115:7118PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Riley KE, Hobza P (2011) Cryst Growth Des 11:4272CrossRefGoogle Scholar
  11. 11.
    Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Chem Soc Rev 40:2267PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Scholfield MR, Vander Zanden CM, Carter M, Ho PS (2013) Protein Sci 22:139PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Pure Appl Chem 85:1711CrossRefGoogle Scholar
  14. 14.
    Rahman ANMM, Bishop R, Craig DC, Scudder ML (2004) Org Biomol Chem 2:175PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Rahman ANMM, Bishop R, Craig DC, Scudder ML (2002) Cryst Eng Commun 4:510CrossRefGoogle Scholar
  16. 16.
    Rahman ANMM, Bishop R, Craig DC, Scudder ML (2003) Cryst Eng Commun 5:422CrossRefGoogle Scholar
  17. 17.
    Bishop R, Scudder ML, Craig DC, Rahman ANMM, Alshahateet SF (2005) Mol Cryst Liq Cryst 440:173CrossRefGoogle Scholar
  18. 18.
    Forni A, Pieraccini S, Rendine S, Gabas F, Sironi M (2012) ChemPhysChem 13:4224PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Zhuo H, Liu M, Li Q, Li W, Cheng J (2014) Spectrochim Acta A 127:10CrossRefGoogle Scholar
  20. 20.
    Nagels N, Hauchecorne D, Herrebout WA (2013) Molecules 18:6829PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Riley KE, Vazquez M, Umemura C, Miller C, Tran K-A (2016) Chem Eur J 22:17690PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Matter H, Nazare M, Gussregen S, Will DW, Schreuder H, Bauer A, Urmann M, Ritter K, Wagner M, Wehner V (2009) Angew Chem Int Ed 48:2911CrossRefGoogle Scholar
  23. 23.
    Lu Y-X, Zou J-W, Wang Y-H, Yu Q-S (2007) Chem Phys 334:1CrossRefGoogle Scholar
  24. 24.
    Reddy DS, Craig DC, Desiraju GR (1996) J Am Chem Soc 118:4090CrossRefGoogle Scholar
  25. 25.
    Yeung KS (2010) Drug Discov Today 15:158CrossRefGoogle Scholar
  26. 26.
    Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J (2011) Chem Soc Rev 40:3496PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G (2012) Chem Soc Rev 41:31PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Metrangolo P, Resnati G, Pilati T, Liantonio R, Meyer F (2007) J Polym Sci 45:1CrossRefGoogle Scholar
  29. 29.
    Voth AR, Ho PS (2007) Curr Top Med Chem 7:1336PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Voth AR, Khuu P, Oishi K, Ho PS (2009) Nat Chem 1:74PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lu YX, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W (2009) J Med Chem 52:2854PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Bandrauk AD, Sedik ES, Matta CF (2006) Mol Phys 104:95CrossRefGoogle Scholar
  33. 33.
    Arabi AA, Matta CF (2011) Phys Chem Chem Phys 13:13738PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Muruganathan M, Sun J, Imamura T, Mizuta H (2015) Nano Lett 15:8176PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Tao Y, Xue Q, Liu Z, Zhang T, Li X, Wu T, Jin Y, Zhu L (2015) Sci Adv Mater 7:239CrossRefGoogle Scholar
  36. 36.
    Calvaresi M, Martinez RV, Losilla NS, Martinez J, Garcia R, Zerbetto F (2010) J Phys Chem Lett 1:3256CrossRefGoogle Scholar
  37. 37.
    Jissy AK, Datta A (2012) ChemPhysChem 13:4163PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Dutta BJ, Bhattacharyya PK (2015) Int J Quantum Chem 115:1459CrossRefGoogle Scholar
  39. 39.
    Sarmah N, Bhattacharyya PK (2016) RSC Adv 6:100008CrossRefGoogle Scholar
  40. 40.
    Foroutan-Nejad C, Marek R (2014) Phys Chem Chem Phys 16:2508PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  42. 42.
    Chandra AK, Nguyen MT (2007) Faraday Discuss 135:191PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Molteni G, Ponti A (2003) Chem Eur J 9:2770PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Nguyen HMT, Peeters J, Nguyen MT, Chandra AK (2004) J Phys Chem A 108:484CrossRefGoogle Scholar
  45. 45.
    Roy RK (2003) J Phys Chem A 107:397CrossRefGoogle Scholar
  46. 46.
    Melin J, Aparicio F, Subramanian V, Galvan M, Chattaraj PK (2004) J Phys Chem A 108:2487CrossRefGoogle Scholar
  47. 47.
    Geerlings P, Proft FD, Langenaeker W (2003) Chem Rev 103:1793PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Parthasarathi R, Subramanian V, Chattaraj PK (2003) Chem Phys Lett 382:48CrossRefGoogle Scholar
  49. 49.
    Hirao H, Chen H, Carvajal MA, Wang Y, Shaik S (2008) J Am Chem Soc 130:3319PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kar R, Pal S (2008) External field and chemical reactivity. In: Chattaraj PK (ed) Chemical reactivity: a density functional view. CRC, Boca RatonGoogle Scholar
  51. 51.
    Kar R, Pal S (2008) Theor Chem Accounts 120:375CrossRefGoogle Scholar
  52. 52.
    Dutta BJ, Bhattacharyya PK (2014) J Phys Chem B 118:9573PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kar R, Chandrakumar KRS, Pal S (2007) J Phys Chem A 111:375PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Deka BC, Bhattacharyya PK (2016) Comput Theor Chem 1078:72CrossRefGoogle Scholar
  55. 55.
    Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New YorkCrossRefGoogle Scholar
  56. 56.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899CrossRefGoogle Scholar
  57. 57.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  58. 58.
    Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang WJ (2010) J Am Chem Soc 132:6498PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Korona T, Moszynski R, Jeziorski BJ (1996) J Chem Phys 105:8178CrossRefGoogle Scholar
  60. 60.
    Szalewicz K (2012) Wiley Interdiscip Rev Comput Mol Sci 2:254CrossRefGoogle Scholar
  61. 61.
    Shao Y, Gan Z, Epifanovsky E, Gilbert ATB, Wormit M, Kussmann J, Lange AW, Behn A, Deng J, Feng X, Ghosh D, Goldey M, Horn PR, Jacobson LD, Kaliman I, Khaliullin RZ, Kús T, Landau A, Liu J, Proynov EI, Rhee YM, Richard RM, Rohrdanz MA, Steele RP, Sundstrom EJ, Woodcock IIIHL, Zimmerman PM, Zuev D, Albrecht B, Alguire E, Austin B, Beran GJO, Bernard YA, Berquist E, Brandhorst K, Bravaya KB, Brown ST, Casanova D, Chang C-M, Chen Y, Chien SH, Closser KD, Crittenden DL, Diedenhofen M, DiStasio Jr RA, Do H, Dutoi AD, Edgar RG, Fatehi S, Fusti-Molnar L, Ghysels A, Golubeva-Zadorozhnaya A, Gomes J, Hanson-Heine MWD, Harbach PHP, Hauser AW, Hohenstein EG, Holden ZC, Jagau T-C, Ji H, Kaduk B, Khistyaev K, Kim J, Kim J, King RA, Klunzinger P, Kosenkov D, Kowalczyk T, Krauter CM, Lao KU, Laurent AD, Lawler KV, Levchenko SV, Lin CY, Liu F, Livshits E, Lochan RC, Luenser A, Manohar P, Manzer SF, Mao S-P, Mardirossian N, Marenich AV, Maurer SA, Mayhall NJ, Neuscamman E, Oana CM, Olivares-Amaya R, O’Neill DP, Parkhill JA, Perrine TM, Peverati R, Prociuk A, Rehn DR, Rosta E, Russ NJ, Sharada SM, Sharma S, Small DW, Sodt A, Stein T, Stück D, Su Y-C, Thom AJW, Tsuchimochi T, Vanovschi V, Vogt L, Vydrov O, Wang T, Watson MA, Wenzel J, White A, Williams CF, Vanovschi V, Yeganeh S, Yost SR, You Z-Q, Zhang IY, Zhang X, Zhou Y, Brooks BR, Chan GKL, Chipman DM, Cramer CJ, Goddard III WA, Gordon MS, Hehre WJ, Klamt A, Schaefer III HF, Schmidt MW, Sherrill CD, Truhlar DG, Warshel A, Xu X, Aspuru-Guzik A, Baer R, Bell AT, Besley NA, Chai J-D, Dreuw A, Dunietz BD, Furlani TR, Gwaltney SR, Hsu C-P, Jung Y, Kong J, Lambrecht DS, Liang W, Ochsenfeld C, Rassolov VA, Slipchenko LV, Subotnik JE, Van Voorhis T, Herbert JM, Krylov AI, Gill PMW, Head-Gordon M (2015) Mol Phys 113:184CrossRefGoogle Scholar
  62. 62.
    Feyereisen MW, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359CrossRefGoogle Scholar
  63. 63.
    Vahtras O, Almlof J, Feyereisen MW (1993) Chem Phys Lett 213:514CrossRefGoogle Scholar
  64. 64.
    Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) J Chem Theory Comput 5:155PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Wang ZX, Zheng BS, Yu XY, Yi PG (2008) J Mol Struct (THEOCHEM) 857:13CrossRefGoogle Scholar
  66. 66.
    Lu YX, Zou JW, Fan JC, Zhao WN, Jiang YJ, Yu QS (2009) J Comput Chem 30:725PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Quinonero D, Garau C, Frontera A, Ballester P, Costa A, Deya PM (2005) J Phys Chem A 109:4632PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Frontera A, Quinonero D, Garau C, Costa A, Ballester P, Deya PM (2006) J Phys Chem A 110:5144PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  70. 70.
    Bulat F, Toro-Labbe A, Brinck T, Murray J, Politzer P (2010) J Mol Model 16:1679PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) Natural bond orbital program, version 5.0. Theoretical Chemistry Institute, University of Wisconsin, MadisonGoogle Scholar
  72. 72.
    Keith TA (2013) TK Gristmill Software. Overland Park, KS. aim.tkgristmill.com
  73. 73.
    Lu T, Chen F (2012) J Comput Chem 33:580PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Koopmans T (1934) Physica 1:104CrossRefGoogle Scholar
  76. 76.
    Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Zierkiewicz W, Fanfrlík J, Hobza P, Michalska D, Zeegers-Huyskens T (2016) Theor Chem Accounts 135:217CrossRefGoogle Scholar
  78. 78.
    Pecina A, Lepsik M, Hnyk D, Hobza P, Fanfrlík J (2015) J Phys Chem A 119:1388PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Politzer P, Murray JS, Clark T, Resnati G (2017) Phys Chem Chem Phys 19:32166PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Feynman RP (1939) Phys Rev 56:340CrossRefGoogle Scholar
  82. 82.
    Politzer P, Murray JS, Clark T (2015) J Mol Model 21:52PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Clark T, Murray JS, Politzer P (2018) ChemPhysChem 19:3044PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Clark T, Murray JS, Politzer P (2018) Phys Chem Chem Phys 20:30076PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ramos M, Alkorta I, Elguero J, Golubev NS, Denisov GS, Benedict H, Limbach HH (1997) J Phys Chem A 101:9791CrossRefGoogle Scholar
  86. 86.
    Rezac J, De la Lande A (2017) Phys Chem Chem Phys 19:791CrossRefGoogle Scholar
  87. 87.
    Stone AJ, Misquitta AJ (2009) Chem Phys Lett 473:201CrossRefGoogle Scholar
  88. 88.
    Schollmeyer D, Shishkin OV, Ruhl T, Vysotsky MO (2008) CrystEngComm 10:715CrossRefGoogle Scholar
  89. 89.
    Ang SJ, Mak AM, Sullivan MB, Wong MW (2018) Phys Chem Chem Phys 20:8685PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Shishkin OV (2008) Chem Phys Lett 458:96CrossRefGoogle Scholar
  91. 91.
    Matter H, Nazare M, Güssregen (2012) Halogen ···π interactions in crystal engineering: frontiers in crystal engineering. In: Tiekink ERT, Zukerman J (eds) The importance of pi-interactions in crystal engineering. Wiley, ChichesterGoogle Scholar
  92. 92.
    Koch U, Popelier PLA (1995) J Phys Chem 99:9747CrossRefGoogle Scholar
  93. 93.
    Esrafili MD (2012) J Mol Model 18:2003PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Lane JR, Contreras-García J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) J Chem Theory Comput 9:3263PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Wick CR, Clark T (2018) J Mol Model 24:142PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Tognetti V, Joubert L (2013) J Chem Phys 138:024102PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Shahbazian S (2018) Chem Eur J 24:5401PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and SciencesSüleyman Demirel UniversityIspartaTurkey
  2. 2.Vocational High School of Health ServicesArtvin Çoruh UniversityArtvinTurkey

Personalised recommendations