Analysis of two novel 1–4 quinolinone structures with bromine and nitrobenzyl ligands

  • Lidiane J. Michelini
  • Wesley F. Vaz
  • Giulio D. C. D’Oliveira
  • Caridad N. Pérez
  • Hamilton B. NapolitanoEmail author
Original Paper


The scientific community has shown particular interest in the study of quinolinones—a class of bicyclic organic compounds. An example of these compounds are the 4-quinolinones, considered to be very useful building blocks, since they can adapt their molecular structures with different ligands for applications in various fields such as pharmacy, medicine, physics and engineering. The compounds (E)-3-(benzylidene)-2-(3-nitrophenyl)-2,3-dihydro-1-(phenylsulfonyl)-quinolin-4-(1H)-one (NFQ) and (E)-3-(benzylidene)-2-(4-bromophenyl)-2,3-dihydro-1-(phenylsulfonyl) quinolin-4-(1H)-one (BFQ) were synthesized and characterized by infrared spectroscopy, 1H and 13C NMR, and melting point. NFQ crystallized in the orthorhombic Pbca space group while BFQ appears in the monoclinic P21/n space group. X-ray diffraction was used to evaluate their crystallographic structures, and Hirshfeld surface evaluates the intermolecular interactions, supramolecular arrangement and packaging. Theoretical vibrational assignments and calculated electronic properties also demonstrate acceptable agreement between experimental and theoretical results.


DFT X-ray diffraction Hirshfeld surface Quinolinone 



The authors would like to thank Brazilian funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG) for financial support and fellowships. Research developed with support of the High-Performance Computing Center at the Universidade Estadual de Goiás (UEG). Single crystal X-ray diffraction data were collected at Universidade de São Paulo (USP).


  1. 1.
    Rodrigues-Silva C, Maniero MG, Peres MS, Guimarães JR (2014) Ocorrência e degradação de quinolonas por processos oxidativos avançados. Quim Nova 37:868–885Google Scholar
  2. 2.
    Lesher GY, Froelich EJ, Gruett MD, Bailey JH, Brundage RP (1962) 1,8-Naphthyridine derivatives. A new class of chemotherapeutic agents. J Med Chem 5(5):1063–1065Google Scholar
  3. 3.
    Andriole VT (2005) The quinolones: past present, and future. Clin Infect Dis 41:S113–S119CrossRefGoogle Scholar
  4. 4.
    Shiro T, Fukaya T, Tobe M (2015) The chemistry and biological activity of heterocycle-fused quinolinone derivatives: a review. Eur J Med Chem 97:397–408CrossRefGoogle Scholar
  5. 5.
    De Leon P, et al (2009) Quinolinone PDE2 Inhibitors. World Patent application WO2011011312A1Google Scholar
  6. 6.
    Saji H, Kimura H, Ono M, Matsumoto H (2014) Radioactive quinolinone derivative and pharmaceutical drug comprising the same. Japanese Patent CA2836400A1, 27 June 2014Google Scholar
  7. 7.
    Fatheree PR, Turner SD, Goldblum AA, Chao RS, Genov D (2016) Crystalline form of a quinolinone-carboxamide compound. US Patent US14816237Google Scholar
  8. 8.
    Cai S et al (2012) Methods for synthesizing quinolinone compounds. US Patent application US20050137399A1Google Scholar
  9. 9.
    Roussaki M et al (2013) Synthesis and anti-parasitic activity of a novel quinolinone-chalcone series. Bioorg Med Chem Lett 23:6436–6441CrossRefGoogle Scholar
  10. 10.
    Kwak SH et al (2015) Solid-phase synthesis of quinolinone library. ACS Comb Sci 17:60–69CrossRefGoogle Scholar
  11. 11.
    Kwak SH et al (2016) Discovery and structure–activity relationship studies of quinolinone derivatives as potent IL-2 suppressive agents. Bioorg Med Chem 24:5357–5367CrossRefGoogle Scholar
  12. 12.
    Lakshmi Narayana Sharma K et al (2017) Palladium-catalyzed domino sequence for the synthesis of N-aryl quinolinone-3-carboxylate derivatives and their anti-proliferative activity. Tetrahedron Lett 58:1127–1131CrossRefGoogle Scholar
  13. 13.
    Nanke Y et al. (2016) Rebamipide, an amino acid analog of 2(1H)-quinolinone, inhibits the formation of human osteoclasts. Biomed Res Int 2016:6824719Google Scholar
  14. 14.
    Kalkhambkar RG et al (2012) ChemInform Abstract: Synthesis and biological studies of some new acrylic acid ethyl esters of quinolinone. Monatshefte für Chemie − Chemical Monthly 143:1075–1086CrossRefGoogle Scholar
  15. 15.
    Vats P et al (2014) Chromenone and quinolinone derivatives as potent antioxidant agents. Med Chem Res 23:4907–4914CrossRefGoogle Scholar
  16. 16.
    Rylova G et al (2012) Abstract 4748: molecular targets of quinolinone derivatives with anticancer activity. Cancer Res 72:4748 LP–4744748CrossRefGoogle Scholar
  17. 17.
    Rylova G et al (2014) Abstract 4624: molecular target identification of quinolinone based anticancer compounds. Cancer Res 74:4624 LP–4624624CrossRefGoogle Scholar
  18. 18.
    Paramaguru G, Vijay Solomon R, Jagadeeswari S, Venuvanalingam P, Renganathan R (2014) Tuning the photophysical properties of 2-quinolinone-based donor-acceptor molecules through N-versus O-alkylation: insights from experimental and theoretical investigations. Eur J Org Chem 2014:753–766CrossRefGoogle Scholar
  19. 19.
    Wiles JA, Bradbury BJ, Pucci MJ (2010) New quinolone antibiotics: a survey of the literature from 2005 to 2010. Expert Opin Ther Pat 20:1295–1319CrossRefGoogle Scholar
  20. 20.
    Desiraju GR (2014) Crystallography and geopolitics. Science 343:1057–1057CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst 71:3–8Google Scholar
  23. 23.
    Farrugia LJ (2012) WinGX and ORTEP for windows: an update. J Appl Crystallogr 45:849–854CrossRefGoogle Scholar
  24. 24.
    Macrae CF et al (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457CrossRefGoogle Scholar
  25. 25.
    Spek AL (2003) Single-crystal structure validation with the program PLATON. J Appl Crystallogr 36:7–13CrossRefGoogle Scholar
  26. 26.
    McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Cryst 60:627–668Google Scholar
  27. 27.
    Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4:378–392CrossRefGoogle Scholar
  28. 28.
    Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19CrossRefGoogle Scholar
  29. 29.
    Wood PA, McKinnon JJ, Parsons S, Pidcock E, Spackman MA (2008) Analysis of the compression of molecular crystal structures using Hirshfeld surfaces. CrystEngComm 10:368–376.
  30. 30.
    Chattopadhyay B et al (2010) Supramolecular architectures in 5,5′-substituted Hydantoins: crystal structures and Hirshfeld surface analyses. Cryst Growth Des 10:4476–4484CrossRefGoogle Scholar
  31. 31.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241CrossRefGoogle Scholar
  32. 32.
    Paciotti R et al (2015) Serine O-sulfation probed by IRMPD spectroscopy. Phys Chem Chem Phys 17:25891–25904CrossRefGoogle Scholar
  33. 33.
    Foresman JB, Frisch AE (1996) Exploring chemistry with electronic structure methods. Gaussian, Inc., Wallingford, CTGoogle Scholar
  34. 34.
    Buczek A, Kupka T, Broda MA, Żyła A (2016) Predicting the structure and vibrational frequencies of ethylene using harmonic and anharmonic approaches at the Kohn–sham complete basis set limit. J Mol Model 22:42CrossRefGoogle Scholar
  35. 35.
    Jamroz MH (2010) Vibrational energy distribution analysis. VEDA 4, Warsaw.
  36. 36.
    Dennington R, Keith T, Millam J (2009) GaussView, ver 5. Semichem Inc., Shawnee Mission, KS.Google Scholar
  37. 37.
    Silva NC (2013) Caracterização esrutural do flavonoide C16H14O3. Masters thesis, Universidade Estadual de Goiás, BrazilGoogle Scholar
  38. 38.
    Kupcewicz B et al (2013) Structure-cytotoxic activity relationship of 3-arylideneflavanone and chromanone (E,Z isomers) and 3-arylflavones. Bioorg Med Chem Lett 23:4102–4106CrossRefGoogle Scholar
  39. 39.
    Zimmerman JR et al (2015) The synthesis of a new class of highly fluorescent chromones via an inverse-demand hetero-Diels-Alder reaction. Org Lett 17:3256–3259CrossRefGoogle Scholar
  40. 40.
    Dziewulska-Kułaczkowska A, Mazur L (2011) Structural studies and characterization of 3-formylchromone and products of its reactions with chosen primary aromatic amines. J Mol Struct 985:233–242CrossRefGoogle Scholar
  41. 41.
    Krupa J, Lackner H, Jones PG, et al (1989) The Absolute Configuration of the Juglomycins. Z Naturforsch B 44:345–352Google Scholar
  42. 42.
    Brandl M, Weiss MS, Jabs A, Suhnel J, Hilgenfled R (2001) C–H⋯pi-interactions in proteins. J Mol Biol 307:357–377CrossRefGoogle Scholar
  43. 43.
    McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun 0:3814–3816. doi:
  44. 44.
    Vandurm P et al (2009) Structural and theoretical studies of [6-bromo-1-(4-fluorophenylmethyl)-4(1H)-quinolinon-3-yl]-4-hydroxy-2-oxo-3-butenoïc acid as HIV-1 integrase inhibitor. Bioorg Med Chem Lett 19:4806–4809CrossRefGoogle Scholar
  45. 45.
    Sakuma K, Nakagawa H, Oikawa T, Noda M, Ikeda S (2017) Effects of 4(1H)-quinolinone derivative, a novel non-nucleotide allosteric purinergic P2Y2agonist, on cardiomyocytes in neonatal rats. Sci Rep 7:1–10CrossRefGoogle Scholar
  46. 46.
    Yasoshima K, Yamasaki F, Shinkawa T, Yoshitomi K, Imai M (1993) Effect of a novel diuretic, 7-chloro-2,3-dihydro-1-(2-methylbenzoyl)-4(IH)-quinolinone-4-oxime-o- sulfonic acid, potassium salt (M17055) on Na+ and K+ transport in the distal nephron segments. J Pharmacol Exp Ther 266:1581 LP–1581588Google Scholar
  47. 47.
    Karabacak M, Çınar M, Çoruh A, Kurt M (2009) Theoretical investigation on the molecular structure, infrared, Raman and NMR spectra of Para-halogen benzenesulfonamides, 4-X-C6H4SO2NH2 (X=Cl, Br or F). J Mol Struct 919:26–33CrossRefGoogle Scholar
  48. 48.
    Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2015) Introduction to spectroscopy, 4th edn. Cengage Learning, Boston, MAGoogle Scholar
  49. 49.
    Benhalima N et al (2016) Solvent effects on molecular structure, vibrational frequencies, and NLO properties of N-(2,3-dichlorophenyl)-2-nitrobenzene–sulfonamide: a density functional theory study. Braz J Phys 46:371–383CrossRefGoogle Scholar
  50. 50.
    Vinod KS, Periandy S, Govindarajan M (2016) Spectroscopic [FT-IR and FT-Raman] and molecular modeling (MM) study of benzene sulfonamide molecule using quantum chemical calculations. J Mol Struct 1116:226–235CrossRefGoogle Scholar
  51. 51.
    Chohan ZH, Youssoufi MH, Jarrahpour A, Ben Hadda T (2010) Identification of antibacterial and antifungal pharmacophore sites for potent bacteria and fungi inhibition: indolenyl sulfonamide derivatives. Eur J Med Chem 45:1189–1199CrossRefGoogle Scholar
  52. 52.
    Chandran A et al (2012) FT-IR, FT-Raman and computational study of (E)-N-carbamimidoyl-4-((4-methoxybenzylidene)amino)benzenesulfonamide. Spectrochim Acta A Mol Biomol Spectrosc 92:84–90CrossRefGoogle Scholar
  53. 53.
    Sarojini K, Krishnan H, Kanakam CC, Muthu SS (2013) Structural, spectroscopic studies, NBO analysis, NLO and HOMO–LUMO of 4-methyl-N-(3-nitrophenyl)benzene sulfonamide with experimental and theoretical approaches. Spectrochim Acta A Mol Biomol Spectrosc 108:159–170CrossRefGoogle Scholar
  54. 54.
    Roeges NPG (1994) A guide to the complete interpretation of infrared spectra of organic structures. Wiley, New YorkGoogle Scholar
  55. 55.
    Vaz WF et al (2016) Synthesis, characterization, and third-order nonlinear optical properties of a new neolignane analogue. RSC Adv 6:79215–79227CrossRefGoogle Scholar
  56. 56.
    Mooney EF (1963) The infrared spectra of chloro- and bromobenzene derivatives—I. Anisoles and phenetoles. Spectrochim Acta 19:877–887CrossRefGoogle Scholar
  57. 57.
    Mooney EF (1964) The infra-red spectra of chloro- and bromobenzene derivatives—II. Nitrobenzenes. Spectrochim Acta 20:1021–1032CrossRefGoogle Scholar
  58. 58.
    Naray-Szabo G, Ferenczy GG (1995) Molecular electrostatics. Chem Rev 95:829–847CrossRefGoogle Scholar
  59. 59.
    Galabov B, Nikolova V, Ilieva S (2013) Does the molecular electrostatic potential reflect the effects of substituents in aromatic systems? Chem Eur J 19:5149–5155CrossRefGoogle Scholar
  60. 60.
    Rahmani R, Boukabcha N, Chouaih A, Hamzaoui F, Goumri-Said S (2018) On the molecular structure, vibrational spectra, HOMO-LUMO, molecular electrostatic potential, UV–Vis, first order hyperpolarizability, and thermodynamic investigations of 3-(4-chlorophenyl)-1-(1yridine-3-yl) prop-2-en-1-one by quantum chemistry calculations. J Mol Struct 1155:484–495CrossRefGoogle Scholar
  61. 61.
    Oliveira SS et al (2017) Synthesis, characterization, and computational study of the supramolecular arrangement of a novel cinnamic acid derivative. J Mol Model 23:35CrossRefGoogle Scholar
  62. 62.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  63. 63.
    Nasiri HR, Bolte M, Schwalbe H (2006) Tautomerism of 4-hydroxy-4(1H)quinolone. Heterocycl Commun 12:319–322CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de QuímicaUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Instituto Federal de CiênciaEducação e Tecnologia GoianoIporáBrazil
  3. 3.Ciências Exatas e TecnológicasUniversidade Estadual de GoiásAnápolisBrazil

Personalised recommendations