Advertisement

Polaron formation at impurity-endowed lattices

  • Paulo Eduardo de BritoEmail author
  • Luiz Antonio Ribeiro Junior
  • Bernhard Georg Enders
  • Hugo Nicolas Nazareno
Original Paper
  • 50 Downloads
Part of the following topical collections:
  1. VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol

Abstract

In semiconducting materials, lattice deformities can play the role of localizing the charge carriers. Polarons are understood as attractive interactions between charge and lattice deformations that result in a single structure composed by a charged particle surrounded by a cloud of phonons. These composite quasi-particles are vital structures when it comes to charge transport mechanism in a wide range of semiconducting materials. In the present work, we investigated the drift of an electron and the subsequent polaron formation in impurity-endowed lattices in the framework of a one-dimensional tight-binding model. Primarily, we scrutinized electronic dynamics in lattices containing two sources of disorders: a barrier and a well. The dispersion of the gamma distribution gives an idea of the extension of the disorder region in the lattice. We studied the dynamics of an injected electron interacting with the lattice vibrations where we consider, for a given degree of disorder, different velocities of the incoming particle. Our results show that there are different kinds of propagation/localization for the electron according to the assumed initial velocity. Importantly, we obtained the critical values for the impurity strength to promote the quenching of Bloch oscillations and the localization of polarons.

Keywords

Low-dimensional lattices Bloch oscillations Impurity Polarons 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the Brazilian Research Councils CNPq and CAPES. L.A.R.J and B.G.E gratefully acknowledge the financial support from the Brazilian Research Council FAPDF grants 193.001.556/2017 and 193.001.511/2017 and also wish to thank the Brazilian Ministry of Planning, Budget and Management (Grant DIPLA 005/2016).

References

  1. 1.
    Landau LD (1965). In: ter Haar D (ed) Collected papers of L.D. Landau. Pergamon Press, Oxford, pp 67–68Google Scholar
  2. 2.
    Landau LD, Pekar SI (1965). In: ter Haar D (ed) Collected papers of L.D. Landau. Pergamon Press, Oxford, p 478Google Scholar
  3. 3.
    Cohen MH, Economou EN, Soukoulis CM (1983) Phys Rev Lett 51:1202.  https://doi.org/10.1103/PhysRevLett.51.1202 CrossRefGoogle Scholar
  4. 4.
    Economou EN, Yanovitskii O, Fraggis T (1993) Phys Rev B 47:740.  https://doi.org/10.1103/PhysRevB.47.740 CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Nazareno HN, Lépine Y (1997) Phys Rev B 55(11):6661.  https://doi.org/10.1103/PhysRevB.55.6661 CrossRefGoogle Scholar
  7. 7.
    Lyssenko GVVG, Loser F, Hasche T, Leo K, Dignam MM, Kohler K (1997) Phy Rev Lett 79:301.  https://doi.org/10.1103/PhysRevLett.79.301 CrossRefGoogle Scholar
  8. 8.
    Xu YL, Fegadolli WS, Gan L, Lu MH, Liu XP, Li ZY, Scherer A, Chen YF (2016) Nat Commun 7:11319.  https://doi.org/10.1038/ncomms11319 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    He Z, Peng S, Cai F, Ke M, Liu Z (2007) Phys Rev E 75:056605.  https://doi.org/10.1103/PhysRevE.76.056605 CrossRefGoogle Scholar
  10. 10.
    Sapienza R, Costantino P, Wiersma D (2003) Phys Rev Lett 91:263902.  https://doi.org/10.1103/PhysRevLett.91.263902 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hartmann T, Keck F, Korsch HJ, Mossmann S (2004) J New Phys 6:1.  https://doi.org/10.1088/1367-2630/6/1/002 CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Golez D, Bonca J, Vidmar L (2012) Phys Rev B 85:144304.  https://doi.org/10.1103/PhysRevB.85.144304 CrossRefGoogle Scholar
  14. 14.
    Flo J, Averbukh IS (2014) Phys Rev Lett 113:043002.  https://doi.org/10.1103/PhysRevLett.113.043002 CrossRefGoogle Scholar
  15. 15.
    Ciuchi S, Fratini S, Mayou D (2011) Phys Rev Lett 83(R):081202.  https://doi.org/10.1103/PhysRevB.83.081202 CrossRefGoogle Scholar
  16. 16.
    Li Y, Jing Liu X, Yong Fu J, Sheng Liu D, Jie Xie S, Mo Mei L (2016) Phys Rev B 74:184303.  https://doi.org/10.1103/PhysRevB.74.184303 CrossRefGoogle Scholar
  17. 17.
    Dominguez-Adame F, Malyshev VA, de Moura FABF, Lyra ML (2003) Phys Rev Lett 91:197402.  https://doi.org/10.1103/PhysRevLett.91.197402 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kartashov YV, Konotop VV, Zezyulin DA, Torner L (2016) Phys Rev Lett 117:215301.  https://doi.org/10.1103/PhysRevLett.117.215301 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nazareno HN, de Brito PE (2016) Physica B 494:1.  https://doi.org/10.1016/j.physb.2016.04.029 CrossRefGoogle Scholar
  20. 20.
  21. 21.
  22. 22.
    Junior LAR, da Cunha WF, Gargano R, e Silva GM (2013) J Chem Phys 139:174903.  https://doi.org/10.1063/1.4828726 CrossRefGoogle Scholar
  23. 23.
    Ribeiro LA, Neto PHO, da Cunha WF, Roncaratti LF, Gargano R, da Silva Filho DA, e Silva GM (2011) J Chem Phys 135:224901.  https://doi.org/10.1063/1.3665392 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Planaltina (PPG-CIMA)University of BrasíliaBrasíliaBrazil
  2. 2.International Center for Condensed Matter PhysicsUniversity of BrasíliaBrasíliaBrazil
  3. 3.Faculty of PlanaltinaUniversity of BrasíliaBrasíliaBrazil

Personalised recommendations