Benchmark DFT studies on C–CN homolytic cleavage and screening the substitution effect on bond dissociation energy

  • Naveen Kosar
  • Khurshid Ayub
  • Mazhar Amjad GilaniEmail author
  • Tariq MahmoodEmail author
Original Paper


Nitriles are important chemical species in organic transformations, material chemistry, and environmental sciences. Nitriles are used as cyanating reagents in many organic reactions, where the C–CN bond dissociation has an important role. The reactivity of nitriles can be better understood by studying the bond dissociation energy (BDE) of the C–CN bond. In this benchmark study, homolytic cleavage of the C–CN bond in 12 nitrile compounds is studied. Thirty-one functionals from eight different DFT classes along with three types of basis sets are employed. Theoretical results are compared with the available experimental data. Based on statistical outcomes, the CAM-B3LYP functional of the range separated hybrid GGA class with Pople 6-311G(d,p) basis set provides the most accurate results for calculating the BDE of the C–CN bond. The mean absolute error (MAE) value is 0.06 kcal mol−1, whereas standard deviation (SD) and Pearson’s correlation (R) are 2.79 kcal mol−1 and 0.96, respectively, when compared with experimental data. The substitutional effect on the homolytic cleavage (BDE) of respective bonds in differently substituted nitriles is also investigated. The BDE results indicate that electron withdrawing groups (EWGs) lower the BDE, while electron donating groups (EDGs) increase the BDE of the C–CN bond. The NBO and HOMO–LUMO orbitals analyses are also performed to further elaborate the variational BDE patterns of C–CN bond cleavage.

Graphical Abstract

Benchmark DFT studies on C–CN homolytic cleavage


Nitrile DFT Bond dissociation energy Benchmark 



The authors acknowledge the Higher Education Commission Pakistan (HEC) (Grant no. 3013 and 5309) and COMSATS University, Abbottabad campus for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

894_2019_3930_MOESM1_ESM.docx (24.4 mb)
ESM 1 (DOCX 24973 kb)


  1. 1.
    Kouznetsov VV, Galvis CEP (2018) Strecker reaction and α-amino nitriles: recent advances in their chemistry, synthesis, and biological properties. Tetrahedron 74:773–810CrossRefGoogle Scholar
  2. 2.
    Zhang J-P, Zheng S-L, Huang X-C, Chen X-M (2004) Two unprecedented 3-connected three-dimensional networks of copper(I) triazolates: in situ formation of ligands by cycloaddition of nitriles and ammonia. Angew Chem Int Ed 43:206–209CrossRefGoogle Scholar
  3. 3.
    Dorsey AD, Barbarow JE, Trauner D (2003) Reductive cyclization of δ-hydroxy nitriles: a new synthesis of glycosylamines. Org Lett 5:3237–3239Google Scholar
  4. 4.
    Singh R, Sharma R, Tewari N et al (2006) Nitrilase and its application as a “green” catalyst. Chem Biodivers 3:1279–1287PubMedCrossRefGoogle Scholar
  5. 5.
    Wakatsuki Y, Yamazaki H (1973) Novel synthesis of heterocyclic compounds from acetylenes. J Chem Soc Chem Commun 280aGoogle Scholar
  6. 6.
    Krom MD (1980) Spectrophotometric determination of ammonia: a study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Analyst 105:305CrossRefGoogle Scholar
  7. 7.
    Goudedranche S, Bugaut X, Constantieux T et al (2014) α,β-unsaturated acyl cyanides as new Bis-electrophiles for enantioselective organocatalyzed formal [3+3]spiroannulation. Chem Eur J 20:410–415PubMedCrossRefGoogle Scholar
  8. 8.
    Bobek M, Farkaš J (1969) Nucleic acid components and their analogues. CXXIII. Synthesis of homouridine and homocytidine. Collect Czechoslov Chem Commun 34:1684–1689CrossRefGoogle Scholar
  9. 9.
    Follmann H, Brownson C (2009) Darwin’s warm little pond revisited: from molecules to the origin of life. Naturwissenschaften 96:1265–1292PubMedCrossRefGoogle Scholar
  10. 10.
    Fonseca MV, Escalante-Semerena JC (2001) An in vitro reducing system for the enzymic conversion of cobalamin to adenosylcobalamin. J Biol Chem 276:32101–32108PubMedCrossRefGoogle Scholar
  11. 11.
    Catak S, D’hooghe M, Verstraelen T et al (2010) Opposite regiospecific ring opening of 2-(Cyanomethyl)aziridines by hydrogen bromide and benzyl bromide: experimental study and theoretical rationalization. J Org Chem 75:4530–4541PubMedCrossRefGoogle Scholar
  12. 12.
    Cooper M, Wagner A, Wondrousch D et al (2015) Anaerobic microbial transformation of halogenated aromatics and fate prediction using electron density modeling. Environ Sci Technol 49:6018–6028PubMedCrossRefGoogle Scholar
  13. 13.
    Vrábel I, Lukeš V, Laurinc V, Biskupič S (2000) Ab initio study of the Ne( 1 S)−CN( 2 Σ + ) van der Waals complex. J Phys Chem A 104:96–101CrossRefGoogle Scholar
  14. 14.
    Kim H, Cho M (2013) Infrared probes for studying the structure and dynamics of biomolecules. Chem Rev 113:5817–5847PubMedCrossRefGoogle Scholar
  15. 15.
    Verdaguer M, Bleuzen A, Marvaud V et al (1999) Molecules to build solids: high TC molecule-based magnets by design and recent revival of cyano complexes chemistry. Coord Chem Rev 190–192:1023–1047CrossRefGoogle Scholar
  16. 16.
    Mallah T, Thiebaut S, Verdaguer M, Veillet P (1993) High-Tc molecular-based magnets: ferrimagnetic mixed-valence chromium(III)-chromium(II) cyanides with Tc at 240 and 190 kelvin. Science (80- ) 262:1554–1557CrossRefGoogle Scholar
  17. 17.
    Holmes SM, Girolami GS (1999) Sol−gel synthesis of KV II [Cr III (CN) 6 ]·2H 2 O: a crystalline molecule-based magnet with a magnetic ordering temperature above 100 °C. J Am Chem Soc 121:5593–5594CrossRefGoogle Scholar
  18. 18.
    Wang B, Hou H, Gu Y (2001) Theoretical study of the reaction of atomic hydrogen with acetonitrile. J Phys Chem A 105:156–164CrossRefGoogle Scholar
  19. 19.
    Anderson RA, Watson AA, Harland WA (1981) Fire deaths in the glasgow area: II the role of carbon monoxide. Med Sci Law 21:288–294PubMedCrossRefGoogle Scholar
  20. 20.
    Shang L, Jin L, Dong S (2009) Sensitive turn-on fluorescent detection of cyanide based on the dissolution of fluorophore functionalized gold nanoparticles. Chem Commun 3077Google Scholar
  21. 21.
    Dar TA, Sankar M (2017) Facile synthesis of nitrovanillin- appended porphyrin and its utilization as potent, recyclable, naked-eye CN − and F − ion sensor. ChemistrySelect 2:6778–6783CrossRefGoogle Scholar
  22. 22.
    Gee H-C, Lee C-H, Jeong Y-H, Jang W-D (2011) Highly sensitive and selective cyanide detection via Cu2+ complex ligand exchange. Chem Commun 47:11963CrossRefGoogle Scholar
  23. 23.
    Chung Y, Ahn KH (2006) N -acyl triazenes as tunable and selective chemodosimeters toward cyanide ion. J Org Chem 71:9470–9474PubMedCrossRefGoogle Scholar
  24. 24.
    Zou S, Li R, Kobayashi H et al (2013) Photo-assisted cyanation of transition metal nitrates coupled with room temperature C–C bond cleavage of acetonitrile. Chem Commun 49:1906CrossRefGoogle Scholar
  25. 25.
    Dawson JHJ, Nibbering NMM (1980) The gas-phase anionic chemistry of saturated and unsaturated aliphatic nitriles. Int J Mass Spectrom Ion Phys 33:3–19CrossRefGoogle Scholar
  26. 26.
    Born M, Ingemann S, Nibbering NMM (1996) Experimental determination of the enthalpies of formation of formyl cyanide and thioformyl cyanide in the gas phase. J Phys Chem 100:17662–17669CrossRefGoogle Scholar
  27. 27.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 (D01). Gaussian Inc., WallingfordGoogle Scholar
  28. 28.
    Millam J, Todd K, Dennington RS (2009) Gauss view 05. Semichem, Inc., Shawnee MissionGoogle Scholar
  29. 29.
    Mo Y, Tian G, Car R et al (2016) Performance of a nonempirical density functional on molecules and hydrogen-bonded complexes. J Chem Phys 145:234306PubMedCrossRefGoogle Scholar
  30. 30.
    Hirao H (2011) Which DFT functional performs well in the calculation of methylcobalamin? Comparison of the B3LYP and BP86 functionals and evaluation of the impact of empirical dispersion correction. J Phys Chem A 115:9308–9313PubMedCrossRefGoogle Scholar
  31. 31.
    Gill PMW, Johnson BG, Pople JA, Frisch MJ (1992) The performance of the Becke—Lee—Yang—Parr (B—LYP) density functional theory with various basis sets. Chem Phys Lett 197:499–505CrossRefGoogle Scholar
  32. 32.
    Riley KE, Op’t Holt BT, Merz KM (2007) Critical assessment of the performance of density functional methods for several atomic and molecular properties. J Chem Theory Comput 3:407–433PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) Development and assessment of new exchange-correlation functionals. J Chem Phys 109:6264–6271CrossRefGoogle Scholar
  34. 34.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868PubMedCrossRefGoogle Scholar
  35. 35.
    Dahlke EE, Truhlar DG (2005) Improved density functionals for water. J Phys Chem B 109:15677–15683PubMedCrossRefGoogle Scholar
  36. 36.
    Boese AD, Handy NC (2002) New exchange-correlation density functionals: the role of the kinetic-energy density. J Chem Phys 116:9559–9569CrossRefGoogle Scholar
  37. 37.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401PubMedCrossRefGoogle Scholar
  38. 38.
    Zhao Y, Lynch BJ, Truhlar DG (2004) Development and assessment of a new hybrid density functional model for thermochemical kinetics. J Phys Chem A 108:2715–2719CrossRefGoogle Scholar
  39. 39.
    Baker J (1986) An algorithm for the location of transition states. J Comput Chem 7:385–395CrossRefGoogle Scholar
  40. 40.
    Adamo C, Barone V (1997) Toward reliable adiabatic connection models free from adjustable parameters. Chem Phys Lett 274:242–250CrossRefGoogle Scholar
  41. 41.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  42. 42.
    Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–675CrossRefGoogle Scholar
  43. 43.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  44. 44.
    Schmider HL, Becke AD (1998) Optimized density functionals from the extended G2 test set. J Chem Phys 108:9624–9631CrossRefGoogle Scholar
  45. 45.
    Wilson PJ, Bradley TJ, Tozer DJ (2001) Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials. J Chem Phys 115:9233–9242CrossRefGoogle Scholar
  46. 46.
    Zhao Y, Truhlar DG (2004) Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J Phys Chem A 108:6908–6918CrossRefGoogle Scholar
  47. 47.
    Xu X, Goddard WA (2004) From the cover: the X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc Natl Acad Sci 101:2673–2677PubMedCrossRefGoogle Scholar
  48. 48.
    Boese AD, Martin JML (2004) Development of density functionals for thermochemical kinetics. J Chem Phys 121:3405–3416PubMedCrossRefGoogle Scholar
  49. 49.
    Becke AD (1996) Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104:1040–1046CrossRefGoogle Scholar
  50. 50.
    Zhao Y, Truhlar DG (2005) Benchmark databases for nonbonded interactions and their use to test density functional theory. J Chem Theory Comput 1:415–432PubMedCrossRefGoogle Scholar
  51. 51.
    Zhao Y, Liu J, Li L et al (2005) Role of Ras/PKCζ/MEK/ERK1/2 signaling pathway in angiotensin II-induced vascular smooth muscle cell proliferation. Regul Pept 128:43–50PubMedCrossRefGoogle Scholar
  52. 52.
    Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615PubMedCrossRefGoogle Scholar
  53. 53.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  54. 54.
    Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473PubMedCrossRefGoogle Scholar
  55. 55.
    Harvey JN (2004) DFT computation of relative spin-state energetics of transition metal compounds. In: Principles and applications of density functional theory in inorganic chemistry I. Structure and bonding, vol 112. Springer, Berlin, pp 151–184Google Scholar
  56. 56.
    Perdew JP, Parr RG, Levy M, Balduz JL (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694. CrossRefGoogle Scholar
  57. 57.
    Tawada Y, Tsuneda T, Yanagisawa S et al (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425–8433PubMedCrossRefGoogle Scholar
  58. 58.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  59. 59.
    Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728CrossRefGoogle Scholar
  60. 60.
    Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  61. 61.
    Tolbatov I, Chipman DM (2014) Comparative study of Gaussian basis sets for calculation of core electron binding energies in first-row hydrides and glycine. Theor Chem Accounts 133:1560CrossRefGoogle Scholar
  62. 62.
    Jensen F (2018) Method calibration or data fitting? J Chem Theory Comput 14:4651–4661PubMedCrossRefGoogle Scholar
  63. 63.
    Cheeseman JR, Frisch MJ, Devlin FJ, Stephens PJ (2000) Hartree−fock and density functional theory ab initio calculation of optical rotation using GIAOs: basis set dependence. J Phys Chem A 104:1039–1046CrossRefGoogle Scholar
  64. 64.
    Bjornsson R, Arnason I (2009) Conformational properties of six-membered heterocycles: accurate relative energy differences with DFT, the importance of dispersion interactions and silicon substitution effects. Phys Chem Chem Phys 11:8689PubMedCrossRefGoogle Scholar
  65. 65.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297PubMedCrossRefGoogle Scholar
  66. 66.
    Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874PubMedCrossRefGoogle Scholar
  67. 67.
    Bland JM, Altman DG (1996) Statistics notes: measurement error and correlation coefficients. BMJ 313:41–42PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22:679–688CrossRefGoogle Scholar
  69. 69.
    Tsipis AC (2014) DFT flavor of coordination chemistry. Coord Chem Rev 272:1–29CrossRefGoogle Scholar
  70. 70.
    Luo Y-R (2007) Comprehensive hand book of chemical bond energies. Taylor & Francis, LondonGoogle Scholar
  71. 71.
    Mezei PD, Csonka GI, Kállay M (2015) Accurate Diels–Alder reaction energies from efficient density functional calculations. J Chem Theory Comput 11:2879–2888PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryCOMSATS UniversityAbbottabadPakistan
  2. 2.Department of ChemistryCOMSATS UniversityLahorePakistan

Personalised recommendations