Advertisement

Structural, energetic, and vibrational properties of the homodimers of the silyl, germyl, and stannyl halides, (MH3X)2 (M = Si, Ge, Sn; X = F, Cl, Br, I)

  • Ponnadurai Ramasami
  • Thomas A. FordEmail author
Original Paper
  • 41 Downloads
Part of the following topical collections:
  1. Tim Clark 70th Birthday Festschrift

Abstract

A number of properties of the homodimers of the three families of molecules MH3X, where M is Si, Ge, and Sn and X is F, Cl, Br, and I are computed. The results are compared with those of a similar study of the homodimers of the methyl halides containing the same four halogen atoms, and some notable differences are observed among related sets of monomer species. The interaction energies, the primary intermolecular geometrical parameters, the changes in the intramolecular bond lengths, and the vibrational data (wavenumber shifts and dimer/monomer infrared intensity ratios) of some of the modes most closely associated with the site of interaction show, for the most part, regular variations as the central atom and the halogen atom are systematically varied. The results are interpreted in terms of the changes in the bonding properties of the monomer molecules as they undergo dimerization.

Graphical abstract

Interaction energies of the silyl, germyl and stannyl fluoride, chloride, bromide and iodide dimers

Keywords

Ab initio calculations Interaction energies Molecular structures Vibrational spectra 

Notes

Acknowledgments

This work is based on research supported in part by the National Research Foundation (NRF) of South Africa under grant number 2053648. The grant holder (TAF) acknowledges that opinions, findings, and conclusions or recommendations expressed in any publication generated by NRF-supported research are those of the authors and that the NRF accepts no liability in this regard. The authors also acknowledge the University of Mauritius and the University of KwaZulu-Natal for financial assistance, as well as the Centre for High Performance Computing (Cape Town) and the Hippo cluster (University of KwaZulu-Natal) for the use of computing facilities.

Supplementary material

894_2019_3927_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 16 kb)

References

  1. 1.
    Ford TA (2012) J Mol Struct 1009:16–22Google Scholar
  2. 2.
    Xie Y, Jang JH, King RB, Schaefer III HF (2003) Inorg Chem 42:5219–5230PubMedGoogle Scholar
  3. 3.
    Ramasami P, Ford TA (2016) J Mol Struct 1126:2–10Google Scholar
  4. 4.
    Dailey BP, Mays JM, Townes CH (1949) Phys Rev 76:136–137Google Scholar
  5. 5.
    Mays JM, Dailey BP (1952) J Chem Phys 20:1695–1703Google Scholar
  6. 6.
    Kewley R, McKinney PM, Robiette AG (1970) J Mol Spectrosc 34:390–398Google Scholar
  7. 7.
    Sharbaugh AH, Pritchard BD, Thomas VG, Mays JM, Dailey BP (1950) Phys Rev 79:189Google Scholar
  8. 8.
    Griffiths JE, McAfee KB (1961) Proc Chem Soc 456–460Google Scholar
  9. 9.
    Rhee KH, Wilson MK (1965) J Chem Phys 43:333–343Google Scholar
  10. 10.
    Bellama JM, Wandiga SO, Maryott AA (1971) Inorg Nucl Chem Lett 7:71–73Google Scholar
  11. 11.
    Krisher LC, Morrison JA, Watson WA (1972) J Chem Phys 57:1357–1358Google Scholar
  12. 12.
    Wolf SN, Krisher LC (1972) J Chem Phys 56:1040–1049Google Scholar
  13. 13.
    Krisher LC, Wolf SN (1973) J Chem Phys 58:396–398Google Scholar
  14. 14.
    Bellama JM, Wandiga SO, Maryott AA (1974) J Chem Soc, Faraday Trans II 70:719–726Google Scholar
  15. 15.
    Cradock S, McKean DC, MacKenzie MW (1981) J Mol Struct 74:265–276Google Scholar
  16. 16.
    Durig JR, Mohamad AB, Trowell PL, Li YS (1981) J Chem Phys 75:2147–2152Google Scholar
  17. 17.
    Cradock S, Smith JG (1983) J Mol Spectrosc 98:502–504Google Scholar
  18. 18.
    Cradock S, Smith JG (1983) J Mol Spectrosc 102:184–192Google Scholar
  19. 19.
    Krisher LC, Gsell RA, Bellama JM (1971) J Chem Phys 54:2287–2288Google Scholar
  20. 20.
    Wolf SN, Krisher LC, Gsell RA (1971) J Chem Phys 54:4605–4611Google Scholar
  21. 21.
    Wolf SN, Krisher LC, Gsell RA (1971) J Chem Phys 55:2106–2114Google Scholar
  22. 22.
    Monfils A (1951) J Chem Phys 19:138–139Google Scholar
  23. 23.
    Monfils A (1953) Compt Rend 236:795Google Scholar
  24. 24.
    Andersen FA, Bak B (1954) Acta Chem Scand 8:738–743Google Scholar
  25. 25.
    Mayo DW, Opitz HE, Peake JS (1955) J Chem Phys 23:1344–1345Google Scholar
  26. 26.
    Newman C, O’Loane JK, Polo SR, Wilson MK (1956) J Chem Phys 25:855–859Google Scholar
  27. 27.
    Lord RC, Steese CM (1954) J Chem Phys 22:542–546Google Scholar
  28. 28.
    Griffiths JE, Srivastava TN, Onyszchuk M (1962) Can J Chem 40:579–589Google Scholar
  29. 29.
    Freeman DE, Rhee KH, Wilson MK (1963) J Chem Phys 39:2908–2922Google Scholar
  30. 30.
    Nakagawa NJ, Hasegawa A, Hayashi M (1982) Spectrochim Acta 38A:773–778Google Scholar
  31. 31.
    Cradock S, Bürger H, Eujen R, Schulz P (1982) Mol Phys 46:641–649Google Scholar
  32. 32.
    McKean DC, Torto I, MacKenzie MW, Morrison AR (1983) Spectrochim Acta 39A:387–398Google Scholar
  33. 33.
    Cradock S (1984) Mol Phys 51:697–714Google Scholar
  34. 34.
    Lattanzi F, di Lauro C, Henry L, Valentin A, Bürger H (1988) J Mol Spectrosc 127:83–96Google Scholar
  35. 35.
    Bürger H, Burczyk K, Eujen R, Rahner A, Cradock S (1983) J Mol Spectrosc 97:266–286Google Scholar
  36. 36.
    Bürger H, Eujen R, Litz M, Henry L, Valentin A (1988) J Mol Spectrosc 128:98–107Google Scholar
  37. 37.
    Bürger H, Schulz P, Cradock S (1985) Z Naturforsch 40a:383–385Google Scholar
  38. 38.
    Bürger H, Eujen R, Cradock S, Henry L, Valentin A (1986) J Mol Spectrosc 116:228–246Google Scholar
  39. 39.
    Bürger H, Eujen R, Rahner A, Schulz P, Drake JE, Cradock S (1983) Z Naturforsch 38a:740–748Google Scholar
  40. 40.
    Ogilvie JF, Salares VR, Newlands MJ (1978) Ber Bunsenges Phys Chem 82:105Google Scholar
  41. 41.
    Isabel RJ, Guillory WA (1971) J Chem Phys 55:1197–1205Google Scholar
  42. 42.
    Isabel RJ, Guillory WA (1972) J Chem Phys 57:1116–1123Google Scholar
  43. 43.
    Guillory WA, Isabel RJ, Smith GR (1973) J Mol Struct 19:473–491Google Scholar
  44. 44.
    Bellama JM, Gsell RA (1971) Inorg Nucl Chem Lett 7:365–368Google Scholar
  45. 45.
    Webster JR, Millard MM, Jolly WL (1971) Inorg Chem 10:879–883Google Scholar
  46. 46.
    Bürger H, Betzel M (1985) Z Naturforsch 40a:989–994Google Scholar
  47. 47.
    Betzel M, Bürger H, Rahner A (1986) Z Naturforsch 41a:1009–1014Google Scholar
  48. 48.
    Bürger H, Betzel M, Schulz P (1987) J Mol Spectrosc 121:218–235Google Scholar
  49. 49.
    Nagarajan G (1962) Bull Soc Chim Belg 71:226Google Scholar
  50. 50.
    Duncan JL (1964) Spectrochim Acta 20:1807–1814Google Scholar
  51. 51.
    Pillai MGK, Perumal A (1964) Bull Soc Chim Belg 73:641Google Scholar
  52. 52.
    Freeman DE, Wilson MK (1965) Spectrochim Acta 21:1825–1833Google Scholar
  53. 53.
    Müller A, Krebs B, Fadini A, Glemser O, Cyvin SJ, Brunvoll J, Cyvin BN, Elvebredd I, Hagen G, Vizi B (1968) Z Naturforsch 23a:1656–1660Google Scholar
  54. 54.
    Ramaswamy K, Balasubramanian V (1969) Indian. J Phys 43:454–463Google Scholar
  55. 55.
    Robiette AG, Cartwright GJ, Hoy AR, Mills IM (1971) Mol Phys 20:541–553Google Scholar
  56. 56.
    Krishnamachari SLNG (1955) Indian J Phys 29:147Google Scholar
  57. 57.
    Dublish AK, Srivastava BB, Pandey AN (1976) Indian J Pure Appl Phys 14:356Google Scholar
  58. 58.
    Balakrishnan R, Ramaswamy K (1979) Indian J Chem 18A:293Google Scholar
  59. 59.
    Bunnell J, Crafford BC, Ford TA (1980) J Mol Struct 61:383–396Google Scholar
  60. 60.
    Aron J, Bunnell J, Ford TA, Mercau N, Aroca R, Robinson EA (1984) J Mol Struct (THEOCHEM) 110:361–379Google Scholar
  61. 61.
    Mercau N, Aroca R, Robinson EA, Aron J, Bunnell J, Ford TA (1984) J Comput Chem 5:427–440Google Scholar
  62. 62.
    Bunnell J, Ford TA (1986) Spectrochim Acta 42A:543–550Google Scholar
  63. 63.
    Weaving JS, Ford TA (1987) J Mol Struct 161:245–264Google Scholar
  64. 64.
    Yarandina VN, Sverdlov LM (1969) Sov Phys J 11:138–143Google Scholar
  65. 65.
    Thirugnanasambandam O, Karunanidhi N (1977) Indian J Phys 51B:357–368Google Scholar
  66. 66.
    Rai SN, Subramanian C, Sivakumar P, Rao BK, Ramasamy P (1981) Indian J Pure Appl Phys 19:1215–1216Google Scholar
  67. 67.
    Mohan S, Ravikumar KG (1983) Acta Phys Polon A63:77–88Google Scholar
  68. 68.
    Bunnell J, Ford TA (1986) Spectrochim Acta 42A:551–556Google Scholar
  69. 69.
    Bürger H, Cichon J, Ruoff A (1974) Spectrochim Acta 30A:223–235Google Scholar
  70. 70.
    Georghiou C, Baker JC, Jones SR (1976) J Mol Spectrosc 63:89–97Google Scholar
  71. 71.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
  72. 72.
    Møller C, Plesset MS (1934) Phys Rev 46:618–622Google Scholar
  73. 73.
    Dunning Jr TH (1989) J Chem Phys 90:1007–1023Google Scholar
  74. 74.
    Kendall RA, Dunning Jr TH, Harrison RJ (1992) J Chem Phys 96:6796–6806Google Scholar
  75. 75.
    Woon DE, Dunning Jr TH (1993) J Chem Phys 98:1358–1371Google Scholar
  76. 76.
    Peterson KA, Woon DE, Dunning Jr TH (1994) J Chem Phys 100:7410–7415Google Scholar
  77. 77.
    Wilson AK, van Mourik T, Dunning Jr TH (1996) J Mol Struct (THEOCHEM) 358:339–349Google Scholar
  78. 78.
    Schucharat KL, Didier BT, Elsethagen T, Sun L, Gurumoorthy V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045–1052Google Scholar
  79. 79.
    Liu B, McLean AD (1973) J Chem Phys 59:4557–4558Google Scholar
  80. 80.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–556Google Scholar
  81. 81.
    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746Google Scholar
  82. 82.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926Google Scholar
  83. 83.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2009) NBO version 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison. http://www.chem.wisc.edu/~nbo5. Accessed 4 Aug 2010
  84. 84.
    Kutzelnigg W (1984) Angew Chem Int Ed Engl 23:272–295Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computational Chemistry Group, Department of Chemistry, Faculty of ScienceUniversity of MauritiusRéduitMauritius
  2. 2.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa
  3. 3.School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations