The prediction of intermolecular proton-transfer of guanine-cytosine base pair under the influence of fragments from decomposed MOFs

  • Ying Han
  • Dejie LiEmail author
Original Paper


Metal–organic frameworks (MOFs) can be decomposed into various fragments, including negative/positive charges, Zn+ or Cu2+ when used as drug delivery materials. To evaluate the safety of MOFs, different mechanisms of intermolecular proton-transfer in guanine-cytosine (GC) base pair under the influence of such fragments were investigated by density functional theory methods. In a vacuum, calculation results show that an excess electron assists proton transfer in the anionic GC radical, and a hole assists proton transfer in the cationic GC radical with small energy barriers. The mechanism for Zn+-GC transfer is that the located hole assists proton transfer from G to C. All proton-transfers of Cu2+-GC become spontaneous with stable proton-transferred structures, and the driving force is the Cu2+ due to its electrostatic and oxidative effects. However, in a micro-water environment, the average energy barrier of all proton-transfer processes increases by 2.8 kcal mol−1 because of the redistribution of charges. Water molecules play a very important role in buffering, and the influence of fragments on intermolecular proton-transfer processes of GC is reduced.


Proton-transfer Guanine-cytosine Metal–organic frameworks Charge 



The authors gratefully acknowledge financial support of the National Natural Science Foundation of China (Nos. 21575080, 21275091, 21175084).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

894_2019_3926_MOESM1_ESM.docx (77 kb)
ESM 1 (DOCX 76 kb)


  1. 1.
    Ke PC, Lamm MH (2011) A biophysical perspective of understanding nanoparticles at large. Phys Chem Chem Phys 13(16):7273–7283. CrossRefPubMedGoogle Scholar
  2. 2.
    Bertrand N, Wu J, Xu X (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliver Rev 66(24):2–25. CrossRefGoogle Scholar
  3. 3.
    Kim CS, Duncan B, Creran B (2013) Triggered nanoparticles as therapeutics. Nano Today 8(4):439–447. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hu ML, Safarifard V, Doustkhah E (2017) Taking organic reactions over metal-organic frameworks as heterogeneous catalysis. Micropor Mesopor Mat 256:111–127. CrossRefGoogle Scholar
  5. 5.
    Yang J, Trickett CA, Alahmadi SB (2017) Calcium l-lactate frameworks as naturally degradable carriers for pesticides. J Am Chem Soc 139(24):8118–8121. CrossRefPubMedGoogle Scholar
  6. 6.
    Huxford RC, Rocca JD, Lin W (2010) Metal-organic frameworks a potential drug carriers. Curr Opin Chem Boil 14(2):262–268. CrossRefGoogle Scholar
  7. 7.
    McKinlay AC, Morris RE, Horcajada P (2010) BioMOFs: metal-organic frameworks for biological and medical applications. Angew Chem Int Edit 49(36):6260–6266. CrossRefGoogle Scholar
  8. 8.
    Mandal B, Chung JS, Kang SG (2017) Exploring the geometric, magnetic and electronic properties of hofmann mofs for drug delivery. Phys Chem Chem Phys 19(46):31316–31324. CrossRefPubMedGoogle Scholar
  9. 9.
    Horcajada P, Serre C, Maurin G (2008) Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc 130(21):6774–6780. CrossRefPubMedGoogle Scholar
  10. 10.
    Stefaniak KR, Epley CC, Novak JJ, Mcandrew ML (2018) Photo-triggered release of 5-fluorouracil from a MOF drug delivery vehicle. Chem Commun 54:7617–7620. CrossRefGoogle Scholar
  11. 11.
    Wu MX, Yang YW (2017) Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater 29(23):1606134–1606154. CrossRefGoogle Scholar
  12. 12.
    Abanades IL, Abanades SL, Forgan RS (2018) Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chem Commun 54(22):2792–2795. CrossRefGoogle Scholar
  13. 13.
    Chen X, Tong R, Shi Z (2017) MOF nanoparticles with encapsulated autophagy inhibitor in controlled drug delivery system for antitumor. Acs Appl Mater Inter 10(3):2328–2337. CrossRefGoogle Scholar
  14. 14.
    McDonald KA, Ko N, Noh K (2017) Thermal decomposition pathways of nitro-functionalized metal–organic frameworks. Chem Commun 53:7808–7811. CrossRefGoogle Scholar
  15. 15.
    Liu H, Guo P, Regueira T (2016) Irreversible change of the pore structure of ZIF-8 in carbon dioxide capture with water coexistence. J Phys Chem C 120(24):13287–13294. CrossRefGoogle Scholar
  16. 16.
    Cheng P, Hu YH (2014) H2O-functionalized zeolitic Zn(2-methylimidazole) 2 framework (ZIF-8) for H2 storage. J Phys Chem C 118(38):21866–21872. CrossRefGoogle Scholar
  17. 17.
    Almeida D, Antunes R, Martins G (2011) Electron transfer-induced fragmentation of thymine and uracil in atom-molecule collisions. Phys Chem Chem Phys 13(34):15657–15665. CrossRefPubMedGoogle Scholar
  18. 18.
    Decoste JB, Peterson GW, Smith MW (2012) Enhanced stability of cu-BTC MOF via perfluorohexane plasma-enhanced chemical vapor deposition. J Am Chem Soc 134(3):1486–1489. CrossRefPubMedGoogle Scholar
  19. 19.
    Kang H, Park KH, Lee H (2016) Rate and product studies of 1-adamantylmethyl haloformates under solvolytic conditions. B Kor Chem Soc 37:123–128. CrossRefGoogle Scholar
  20. 20.
    Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191(4784):144–148. CrossRefGoogle Scholar
  21. 21.
    Mitchell P (1979) Keilin’s respiratory chain concept and its chemiosmotic consequences. Science 206(4423):1148–1159. CrossRefGoogle Scholar
  22. 22.
    Noguera M, Bertran J, Sodupe M (2008) Cu2+/+ cation coordination to adenine−thymine base pair. Effects on intermolecular proton-transfer processes. J Phys Chem B 112(15):4817–4825. CrossRefPubMedGoogle Scholar
  23. 23.
    Lippert B (2000) Multiplicity of metal ion binding patterns to nucleobases. Coord Chem Rev 200(3):487–516. CrossRefGoogle Scholar
  24. 24.
    Terenzi A, Bonsignore R, Spinello A (2014) Selective G-quadruplex stabilizers: schiff-base metal complexes with anticancer activity. RSC Adv 4(63):33245–33256. CrossRefGoogle Scholar
  25. 25.
    Petrov AS, Pack GP, Lamm G (2004) Calculations of magnesium−nucleic acid site binding in solution. J Phys Chem B 108(19):6072–6081. CrossRefGoogle Scholar
  26. 26.
    Sponer J, Sabat M, Gorb L, Leszczynski J, Lippert B, Hobza P (2000) Metal ions in non-complementary DNA base pairs: an ab initio study of Cu(I), Ag(I), and Au(I) complexes with the cytosine-adenine base pair. J Phys Chem B 104(31):7535–7544. CrossRefGoogle Scholar
  27. 27.
    Johannsen S, Megger N, Bohme D (2010) Solution structure of a DNA double helix with consecutive metal-mediated base pairs. Nat Chem 2(3):229–234. CrossRefPubMedGoogle Scholar
  28. 28.
    Noguera M, Bertran J, Sodupe M (2004) A quantum chemical study of Cu2+ interacting with guanine−cytosine base pair. Electrostatic and oxidative effects on intermolecular proton-transfer processes. J Phys Chem A 108(2):333–341. CrossRefGoogle Scholar
  29. 29.
    Li D, Han Y, Li H, Zhang P, Kang Q, Li Z, Shen D (2018) Do the fragments from decomposed ZIF-8 greatly affect some of the intramolecular proton-transfer of thymine? A quantum chemical study. RSC Adv 8:27227–27234. CrossRefGoogle Scholar
  30. 30.
    Asbury JB, Steinel T, Stromberg C, Gaffney KJ, Piletic IR, Fayer MD (2003) Hydrogen bond dynamics probed with ultrafast infrared heterodyne-detected multidimensional vibrational stimulated echoes. Phys Rev Lett 91(23):12981–12997. CrossRefGoogle Scholar
  31. 31.
    Hu X, Li H, Liang W, Han S (2004) Theoretical study of the proton transfer of uracil and (water)n (n = 0−4): water stabilization and mutagenicity for uracil. J Phys Chem B 108(34):12999–13007. CrossRefGoogle Scholar
  32. 32.
    Chandra AK, Uchimaru T, Zeegers-Huyskens T (2002) Theoretical study on protonated and deprotonated 5-substituted uracil derivatives and their complexes with water. J Mol Struct 605(2):213–220. CrossRefGoogle Scholar
  33. 33.
    Laudo M, Whittleton SR, Wetmore SD (2003) Effects of hydrogen bonding on the acidity of uracil. J Phys Chem A 107(48):10406–10413. CrossRefGoogle Scholar
  34. 34.
    Cai Z, Gu Z, Sevilla MD (2001) Electron spin resonance study of electron and hole transfer in DNA: effects of hydration, aliphatic amine cations, and histone proteins. J Phys Chem B 105(25):6031–6041. CrossRefGoogle Scholar
  35. 35.
    Colson AO, Besler B, Sevilla MD (2010) Ab initio molecular orbital calculations on DNA base pair radical ions: effect of base pairing on proton-transfer energies, electron affinities, and ionization potentials. Cheminform 24(11):9787–9794. CrossRefGoogle Scholar
  36. 36.
    Colson AO, Besler B, Close DM, Sevilla MD (1992) Ab initio molecular orbital calculations of DNA bases and their radical ions in various protonation states: evidence for proton transfer in GC base pair radical anions. Cheminform 23(22):661–668. CrossRefGoogle Scholar
  37. 37.
    Weinhold FJ, Carpenter JE (1988) The structure of small molecules and ions. Plenum, New York.
  38. 38.
    Malick DK, Petersson GA (1998) Transition states for chemical reactions I. geometry and classical barrier height. J Chem Phys 108(14):5704–5713. CrossRefGoogle Scholar
  39. 39.
    Peiro-Garcia J, Nebot-Gil I (2003) Ab initio study on the mechanism of the atmospheric reaction OH+O3→HO2+O2. Chem Phys Chem 4(8):843–847. CrossRefPubMedGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson R, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo R, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Ochterski JW PC, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Oritz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, PMW G, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision C.02. Gaussian, Inc., Pittsburgh, PAGoogle Scholar
  41. 41.
    Noguera M, Sodupe M, Bertrm J (2004) Effects of protonation on proton-transfer processes in guanine-cytosine Watson-crick base pairs. Theor Chem Accounts 112:318–326. CrossRefGoogle Scholar
  42. 42.
    Bertran J, Blancafort L, Noguera M, Sodupe M (2006) Proton transfer in DNA base pairs. In: Šponer J, Lankaš F (eds)Computational studies of RNA and DNA. Springer, Dordrecht, pp 411–432.
  43. 43.
    Chen HY, Kao CL (2009) Proton transfer in guanine−cytosine radical anion embedded in B-form DNA. J Am Chem Soc 131(43):15930–15938. CrossRefPubMedGoogle Scholar
  44. 44.
    Pople JA, Raghavachari K, Frisch MJ, Binkley JS (1984) Comprehensive theoretical study of isomers and rearrangement barriers of even-electron polyatomic molecules HmABHn. J Am Chem Soc 15(3):6389–6399. CrossRefGoogle Scholar
  45. 45.
    Ceron-carrasco JP, Requena A, Zuniga J (2009) Intermolecular proton transfer in microhydrated guanine− cytosine base pairs: a new mechanism for spontaneous mutation in DNA. J Phys Chem A 113(39):10549–10556. CrossRefPubMedGoogle Scholar
  46. 46.
    Schneider B, Berman HM (1995) Hydration of the DNA bases is local. Biophys J 69(6):2661–2669. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pasquarello A, Petri I, Salmon PS, Parisel O, Car R, Toth E, Powell DH, Fischer HE, Heim L, Merbach AE (2001) First solvation shell of the cu (II) aqua ion: evidence for fivefold coordination. Science 291(5505):856–859. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical EngineeringShandong UniversityJinanPeople’s Republic of China
  2. 2.College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal UniversityJinanPeople’s Republic of China

Personalised recommendations