Advertisement

Theoretical studies on a new series of 1,2,3,4-tetrazine 1,3-dioxide annulation with an imidazole ring or oxazole ring

  • Chunmei Zheng
  • Tianyi Wang
  • Fengyun Wang
  • Xuedong GongEmail author
  • Mingzhu XiaEmail author
Original Paper
  • 53 Downloads

Abstract

To continue our previous work, the structure and some properties of a new series of 1,2,3,4-tetrazine 1,3-dioxides annulated with an imidazole ring or oxazole ring were studied in this paper. Four imidazolo-v-tetrazine 1,3-dioxides (ITDOs) I1–I4 and eight oxazolo-v-tetrazine 1,3-dioxides (OTDOs) O1–O8 were designed. We employed the density functional theory (DFT) in B3LYP/6-311++G(d,p) to study their geometrical structures and the homodesmotic reaction method to calculate the enthalpies of formation. Detonation properties and stabilities were also studied. Generally speaking, ITDOs and OTDOs have more preferable stabilities than TTDOs or pyrazolo-TDOs. I3, I4, O1, and O2 were found to be comparable to the energy level of RDX; O5 and O6 are even as powerful as HMX. The stabilities analysis in this paper can also prove that the five-membered ring deformation and the steric hindrance change caused by the different substituents will affect the stabilities of the structures of 1,2,3,4-tetrazine 1,3-dioxides annulated with a five-membered nitrogen-rich heterocycle. Other factors, such as the position of the electron-withdrawing substituents or the position of coordinated oxygen atom, are worthwhile to investigate in future work.

Keywords

1,2,3,4-Tetrazine Imidazole Oxazole DFT Detonation performance Stability 

Notes

References

  1. 1.
    Tang Y, Yang H, Cheng G (2013) Synthesis and characterization of a stable, catenated N11 energetic salt. Angew Chem Int Ed 52:1–4CrossRefGoogle Scholar
  2. 2.
    Wu Q, Zhu W, Xiao H (2014) A new design strategy for high-energy low-sensitivity explosives: combining oxygen balance equal to zero, a combination of nitro and amino groups, and N-oxide in one molecule of 1-amino-5-nitrotetrazole-3N-oxide. J Mater Chem A 2:13006–13015CrossRefGoogle Scholar
  3. 3.
    Politzer P, Lane P, Murray JS (2013) Computational analysis of relative stabilities of polyazine N-oxides. Struct Chem 24:1965–1974CrossRefGoogle Scholar
  4. 4.
    Politzer P, Lane P, Murray JS (2013) Tricyclic polyazine N-oxides as proposed energetic compounds. Cent Eur J Energ Mater 10:305–323Google Scholar
  5. 5.
    Politzer P, Lane P, Murray JS (2013) Computational characterization of two di-1,2,3,4-tetrazine tetraoxides, DTTO and iso-DTTO, as potential energetic compounds. Cent Eur J Energ Mater 10:37–52Google Scholar
  6. 6.
    Ye C, An Q, Goddard WA, Cheng T, Liu W, Zybin SV, Ju X (2015) Initial decomposition reaction of di-tetrazine-tetroxide (DTTO) from quantum molecular dynamics: implications for a promising energetic material. J Mater Chem A 3:1972–1978CrossRefGoogle Scholar
  7. 7.
    Piercey DG, Chavez DE, Heimsch S, Kirst C, Klapötke TM, Stierstorfer J (2014) An energetic N-oxide and N-amino heterocycle and its transformation to 1,2,3,4-tetrazine-1-oxide. Propellants Explos Pyrotech.  https://doi.org/10.1002/prep.201400224
  8. 8.
    Wang T, Zheng C, Yang J, Zhang X, Gong X, Xia M (2014) Theoretical studies on a new high energy density compound 6-amino-7-nitropyrazino[2,3-e][1,2,3,4]tetrazine 1,3,5-trioxide (ANPTTO). J Mol Model 20:2261–2271CrossRefGoogle Scholar
  9. 9.
    Churakov AM, Tartakovsky VA (2004) Progress in 1,2,3,4-tetrazine chemistry. Chem Rev 104:2601–2616CrossRefGoogle Scholar
  10. 10.
    Bi F, Wang B, Li X, Fan X, Cheng X, Ge Z (2012) Progress in the energetic materials based on 1,2,3,4-tetrazine 1,3-dioxide. Chin J Energ Mater 5:630–637Google Scholar
  11. 11.
    Klapötke TM, Piercey DG, Stierstorfer J, Weyrauther M (2012) The synthesis and energetic properties of 5,7-dinitrobenze-1,2,3,4-tetrazine-1,3-dioxide. Propellants Explos Pyrotech 37:527–535CrossRefGoogle Scholar
  12. 12.
    Voronin AA, Zelenov VP, Churakov AM, Strelenko YA, Fedyanin IV, Tartakovsky VA (2014) Synthesis of 1,2,3,4-tetrazine 1,3-dioxides annulated with 1,2,3-triazoles and 1,2,3-triazole 1-oxides. Tetrahedron 70:3018–3022CrossRefGoogle Scholar
  13. 13.
    Voronin AA, Zelenov VP, Churakov AM, Strelenko YA, Tartakovsky VA (2014) Alkylation of 1-hydroxy-1H-[1,2,3]triazolo[4,5-e][1,2,3,4]tetrazine 5,7-dioxide. Russ Chem Bull Int Ed 63:475–479CrossRefGoogle Scholar
  14. 14.
    Churakov AM, Ioffe SL, Tarakovsky VA (1995) Synthesis of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine 4,6-di-N-oxide. Mendeleev Commun 5:227–228CrossRefGoogle Scholar
  15. 15.
    Zelenov VP, Lobanova AA, Lyukshenko NI, Sysolyatin SV, Kalashnikov AI (2008) Behavior of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine 4,6-dioxide in various media. Russ Chem Bull Int Ed 57:1384–1389CrossRefGoogle Scholar
  16. 16.
    Zelenov VP, Lobanova AA, Sysolyatin SV, Sevodina NV (2013) New syntheses of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine 4,6-dioxide. Russ J Org Chem 49:467–477CrossRefGoogle Scholar
  17. 17.
    Wang T, Zhang T, Xu L, Wu X, Gong X, Xia M (2014) Theoretical studies on vicinal-tetrazine compounds: furoxano-1,2,3,4-tetrazine-1,3,5-trioxide (FTTO-α) and furoxano-1,2,3,4-tetrazine-1,3,7-trioxide (FTTO-β). J Mol Model 20:2516–2527CrossRefGoogle Scholar
  18. 18.
    Wang T, Zheng C, Liu Y, Gong X, Xia M (2015) Theoretical studies of structure, stability and detonation properties of vicinal-tetrazine 1,3-dioxide annulated with a five-membered heterocycle. 1. Annulation with a triazole ring. J Mol Model 21:201–209.  https://doi.org/10.1007/s00894-015-2748-4
  19. 19.
    Wang T, Zheng C, Gong X, Xia M (2015) Theoretical studies of structure, stability and detonation properties of vicinal-tetrazine 1,3-dioxide annulated with a five-membered heterocycle. 2. Annulation with a pyrazole ring. J Mol Model 21:269–277.  https://doi.org/10.1007/s00894-015-2816-9
  20. 20.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision B.05. Gaussian Inc, WallingfordGoogle Scholar
  21. 21.
    Wheeler SE, Houk KN, Schleyer PVR, Allen WD (2009) A hierarchy of homodesmotic reactions for thermochemistry. J Am Chem Soc 131:2547–2560Google Scholar
  22. 22.
    Politzer P, Ma Y, Lane P, Concha MC (2005) Computational prediction of standard gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation. Int J Quantum Chem 105:341–347CrossRefGoogle Scholar
  23. 23.
    Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107:2095–2101CrossRefGoogle Scholar
  24. 24.
    Kamlet M, Jacobs SJ (1968). Chem Phys 48:23Google Scholar
  25. 25.
    Xiao HM, Xu XJ, Qiu L (2008) Theoretical design of high energy density materials. Science Press, BeijingGoogle Scholar
  26. 26.
    Politzer P, Murray JS (2011) Some perspective on estimating detonation properties of C, H, N, O compounds. Cent Eur J Energ Mater 8:209–220Google Scholar
  27. 27.
    Politzer P, Murray JS (1996) Relationships between dissociation energies and electrostatic potentials of C-NO2 bonds: applications to impact sensitivities. J Mol Struct 376:419–424CrossRefGoogle Scholar
  28. 28.
    Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 109:8978–8982CrossRefGoogle Scholar
  29. 29.
    Xiao H, Li Y (1995) Banding and electronic structures of metal azides - sensitivity and conductivity. Sci Chin Ser B 38:538–545Google Scholar
  30. 30.
    Politzer P, Murray JS, Concha MC (1998) C-H and C-NO2 dissociation energies in some azines and nitroazines. J Phys Chem A 102:6697–6701Google Scholar
  31. 31.
    Cao X, Xiang B, Zhang C (2012) Review on relationships between the molecular and crystal structure of explosives and their sensitivities. Chin J Energ Mater 5:643–649Google Scholar
  32. 32.
    Tan B, Long X, Peng R, Li H, Jin B, Chu S (2011) On the shock sensitivity of explosive compounds with small-scale gap test. J Phys Chem A 115:10610–10616CrossRefGoogle Scholar
  33. 33.
    Tan B, Long X, Li J, Nie F (2012) Insight into shock-induced chemical reaction from the perspective of ring strain and rotation of chemical bonds. J Mol Model 18:5127–5132CrossRefGoogle Scholar
  34. 34.
    Dlott DD (2003) Fast molecular aspects in energetic materials. In: Politzer P, Murray JS (eds) Energetic materials. Part 2. Detonation, combustion, vol 6. Elsevier, Amsterdam, pp 125–191CrossRefGoogle Scholar
  35. 35.
    Tsai DH, Armstrong RW (1994) Defect-enhanced structural relaxation mechanism for the evolution of hot spots in rapidly compressed crystals. J Phys Chem 98:10997–11000CrossRefGoogle Scholar
  36. 36.
    Kunz AB (1996) An ab initio investigation of crystalline PETN. Mater Res Soc Symp Proc 418:287–292CrossRefGoogle Scholar
  37. 37.
    Lide DR (2009) CRC handbook of chemistry and physics, 90th edn. CRC Press, Boca RatonGoogle Scholar
  38. 38.
    Pospisil M, Vavra P, Concha MC, Murray JS, Politzer P (2011) Sensitivity and the available free space per molecule in the unit cell. J Mol Model 17:2569–2574CrossRefGoogle Scholar
  39. 39.
    Politzer P, Murray JS (2015) Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. J Mol Model 21:25.  https://doi.org/10.1007/s00894-015-2578-4
  40. 40.
    Rice BM, Mattson W, Trevino SF (1998) Molecular-dynamics investigation of the desensitization of detonable material. Phys Rev E 57:5106–5111CrossRefGoogle Scholar
  41. 41.
    Tarver CM, Urtiew PA, Tran TD (2005) Sensitivity of 2,6-diamino-3,5-dinitropyrazine-1-oxide. J Energ Mater 23:183–203Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryNanjing University of Science and TechnologyNanjingChina

Personalised recommendations