Advertisement

Theoretical and conceptual DFT study of pnicogen- and halogen-bonded complexes of PH2X---BrCl

  • Junyong WuEmail author
  • Hua Yan
  • Aiguo Zhong
  • Hao Chen
  • Yanxian Jin
  • Guoliang Dai
Original Paper
  • 48 Downloads

Abstract

The pnicogen and halogen bonding interactions in the PH2X---BrCl(X = H, F, OH, OCH3 and CH3) complexes have been studied at the MP2/aug-cc-pVTZ level. Analysis of interaction energies shows that the pnicogen-bonded structures are less stable than the corresponding halogen-bonded structures. The pnicogen and halogen bonds were also studied by conceptual DFT reactivity indices. Noncovalent interaction (NCI) and SAPT analysis reveals that the dispersion interactions dominate the pnicogen-bonded complexes of PH2X---BrCl in nature, while the halogen-bonded complexes are dominantly electrostatic energy.

Graphical abstract

It is found that the local softness s+ or son the basic center P of PH2X is related to the interaction energies (ΔECP) of halogen- or pnicogen-bonded complexes.

Keywords

Pnicogen bond Halogen bond Conceptual DFT NCI SAPT 

Notes

Acknowledgments

This study was supported by grants from the National Science Foundations of China (21203135). This research is also supported by the first class subject of Zhejiang chemical engineering and Technology (Taizhou University).

Part of the calculations in this research were performed at the ScGrid of Supercomputing Center.

References

  1. 1.
    Metrangolo P, Carcenac Y, Lahtinen M, Pilati T, Rissanen K, Vij A, Resnati G (2009) Science 323:1461–1464CrossRefGoogle Scholar
  2. 2.
    Metrangolo P, Resnati G (2008) Halogen bonding in crystal engineering. Springer, BerlinGoogle Scholar
  3. 3.
    Legon AC (2010) Phys Chem Chem Phys 12:7736–7747CrossRefGoogle Scholar
  4. 4.
    Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Chem Eur J 17:6034–6038CrossRefGoogle Scholar
  5. 5.
    Scheiner SA (2011) J Chem Phys 134:094315–094323CrossRefGoogle Scholar
  6. 6.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2011) Chem Phys Lett 512:184–187CrossRefGoogle Scholar
  7. 7.
    Politzer P, Murray J, Clark T (2013) Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  8. 8.
    Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292CrossRefGoogle Scholar
  9. 9.
    Politzer P, Murray J, Clark T (2015) J Mol Model 21(3):1–10CrossRefGoogle Scholar
  10. 10.
    Clark T, Heßelmann A (2018) Phys Chem Chem Phys  https://doi.org/10.1039/c8cp03079k
  11. 11.
    Pearson RG (1973) Hard and soft acids and bases. Dowen, Hutchinson and Ross, StroudsbergGoogle Scholar
  12. 12.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–11123CrossRefGoogle Scholar
  13. 13.
    Frisch MJ, Trucks GW, Schlegel HB et al (2004) GAUSSIAN 03, revision B03. Gaussian, Inc, WallingfordGoogle Scholar
  14. 14.
    Boys SF (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  15. 15.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  16. 16.
    Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691CrossRefGoogle Scholar
  17. 17.
    Popelier PLA (2000) Atoms in molecules: an introduction. Prentice Hall, HarlowGoogle Scholar
  18. 18.
    Popelier PLA (2000) Atoms in molecules: an introduction. Prentice Hall, HarlowCrossRefGoogle Scholar
  19. 19.
    Keith TA (2011) AIMAll, version 10.05.04. aim.tkgristmill.com
  20. 20.
    Lu T, Chen FW (2012) J Comput Chem 33:580–592CrossRefGoogle Scholar
  21. 21.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38CrossRefGoogle Scholar
  22. 22.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Chem. Rev. 94:1887–1930Google Scholar
  23. 23.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Chem. Rev. 94:1887–1930CrossRefGoogle Scholar
  24. 24.
    Bukowski R, Cencek W, Jankowski P, Jeziorski B, Jeziorska M, Kucharski SA, Misquitta AJ, Moszynski R, Patkowski K, Rybak S, Szalewicz K, Williams HL, Wormer PES (2012) SAPT2012: An ab initio program for many-body symmetryadapted perturbation theory calculations of intermolecular interaction energies. Sequential and parallel versions. University of Delaware, Newark; University of Warsaw, Warsaw Google Scholar
  25. 25.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154–11161CrossRefGoogle Scholar
  26. 26.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  27. 27.
    Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757CrossRefGoogle Scholar
  28. 28.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  29. 29.
    Gao M, Li QZ, Li HB, Li WZ, Chen JB (2015) RSC Adv 5:12488–12497CrossRefGoogle Scholar
  30. 30.
    Riley KE, Hobza P (2008) J Chem Theory Comput 4:232–242CrossRefGoogle Scholar
  31. 31.
    Lee CT, Yang WT, Parr RG (1988) J Mol Struct THEOCHEM 40:305–313CrossRefGoogle Scholar
  32. 32.
    Yang WT, Parr RG (1985) Proc Natl Acad Sci U S A 82:6723–6726CrossRefGoogle Scholar
  33. 33.
    Ayers PW, Levy M (2000) Theor Chem Accounts 103:353–360CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Pharmaceutical and Materials EngineeringTaizhou UniversityZhejiangChina
  2. 2.School of Chemical Biology and Materials EngineeringSuzhou University of Science and TechnologySuzhouChina

Personalised recommendations