A QM/MM study on ethene and benzene oxidation using silica-supported chromium trioxide

  • Indu Kumari
  • Navjot Kaur
  • Shuchi GuptaEmail author
  • Neetu GoelEmail author
Original Paper


Oxidation of ethene and benzene by chromium oxide (CrO3) supported on silica (SiO2) was investigated by employing hybrid quantum mechanics/molecular mechanics (QM/MM) model calculations. Various mechanistic possibilities, such as C–H or C=C bond activation of hydrocarbons, were investigated in detail for the reaction of ethene and benzene with CrO3 grafted on a silica surface. While activation of the C–H bond leads to the formation of alcohol, epoxide is obtained via C=C bond activation. The complete reaction routes for the formation of each product were traced and found to be exothermic. Thermochemical analysis were performed to predict temperature conditions for the reaction to be feasible in a forward direction. The study provides conclusive evidence to aid experimentalists for further research on oxidation of hydrocarbons using silica-supported metal oxides.

Graphical abstract

Oxidation of ethene and benzene using silica-supported chromium trioxide


CrO3/SiO2 system C2H4 C6H6 A QM/MM model C–H/C=C bond activation 



This work was supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), India under grant no. SERB/F/8589/2014-2015. I.K. wants to thank University Grants Commission (UGC), India for a Basic Scientific Research Fellowship (BSR).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Shilov AE (1984) Activation of saturated hydrocarbons by transition metal complexes (vol 5). Springer, BerlinGoogle Scholar
  2. 2.
    Shilov AE, Shul’pin GB (1997) Activation of C−H bonds by metal complexes. Chem Rev 97:2879–2932CrossRefGoogle Scholar
  3. 3.
    Reddy BM, Fierro JLG (2006) Metal oxides: chemistry and applications. CRC, Boca RatonGoogle Scholar
  4. 4.
    Knözinger H, Weitkamp J (eds) (1997) Handbook of heterogeneous catalysis (vol 1). Wiley-VCH, New YorkGoogle Scholar
  5. 5.
    Kang H, Beauchamp JL (1986) Gas-phase studies of alkene oxidation by transition-metal oxides. Ion-beam studies of CrO+. J Am Chem Soc 108:5663–5668CrossRefGoogle Scholar
  6. 6.
    Jackson TC, Jacobson DB, Freiser BS (1984) Gas-phase reactions of oxo iron (1+) ion (FeO+) with hydrocarbons. J Am Chem Soc 106:1252–1257CrossRefGoogle Scholar
  7. 7.
    Yin S, Wang Z, Bernstein ER (2013) O-atom transport catalysis by neutral manganese oxide clusters in the gas phase: reactions with CO, C2H4, NO2, and O2. J Chem Phys 139:084307CrossRefGoogle Scholar
  8. 8.
    Xie Y, Dong F, Heinbuch S, Rocca JJ, Bernstein ER (2010) Oxidation reactions on neutral cobalt oxide clusters: experimental and theoretical studies. Phys Chem Chem Phys 12:947–959CrossRefGoogle Scholar
  9. 9.
    Dong F, Heinbuch S, Xie Y, Rocca JJ, Bernstein ER, Wang ZC, Deng K, He SG (2008) Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene. J Am Chem Soc 130:1932–1943CrossRefGoogle Scholar
  10. 10.
    Gupta S, Kaur N, Kumari I, Goel N (2018) Clusters as catalysts: advantages and challenges. Chem Modell 14:126CrossRefGoogle Scholar
  11. 11.
    Scupp TM, Dudley TJ (2009) Theoretical investigation of the gas-phase reactions of CrO+ with ethylene. J Phys Chem A 114:1134–1143CrossRefGoogle Scholar
  12. 12.
    Xi Y, Chen B, Lin X, Wang C, Fu H (2016) Methane activation on nickel oxide clusters with a concerted mechanism: a density functional theory study of the effect of silica support. J Mol Model 22:79–90CrossRefGoogle Scholar
  13. 13.
    Xi Y, Chen B, Lin X, Fu H, Wang C (2016) A density functional theory study on the effect of silica support: methane activation on nickel oxide clusters through a radical mechanism. Comput Theor Chem 1076:65–73CrossRefGoogle Scholar
  14. 14.
    Wang ZC, Yin S, Bernstein ER (2013) Double C–H bond activation of hydrocarbons by a gas phase neutral oxide cluster: the importance of spin state. J Phys Chem A 117:2294–2301CrossRefGoogle Scholar
  15. 15.
    Cherian M, Rao MS, Hirt AM, Wachs IE, Deo G (2002) Oxidative dehydrogenation of propane over supported chromia catalysts: influence of oxide supports and chromia loading. J Catal 211:482–495CrossRefGoogle Scholar
  16. 16.
    Wang S, Murata K, Hayakawa T, Hamakawa S, Suzuki K (2000) Dehydrogenation of ethane with carbon dioxide over supported chromium oxide catalysts. Appl Catal A 196:1–8CrossRefGoogle Scholar
  17. 17.
    Michorczyk P, Pietrzyk P, Ogonowski J (2012) Preparation and characterization of SBA-1−supported chromium oxide catalysts for CO2 assisted dehydrogenation of propane. Microporous Mesoporous Mater 161:56–66CrossRefGoogle Scholar
  18. 18.
    Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Surface chemistry and spectroscopy of chromium in inorganic oxides. Chem Rev 96:3327–3350CrossRefGoogle Scholar
  19. 19.
    Gaspar AB, Brito JLF, Dieguez LC (2003) Characterization of chromium species in catalysts for dehydrogenation and polymerization. J Mol Catal A Chem 203:251–266CrossRefGoogle Scholar
  20. 20.
    Hakuli A, Harlin ME, Backman LB, Krause AOI (1999) Dehydrogenation of i-butane on CrOx/SiO2 catalysts. J Catal 184:349–356CrossRefGoogle Scholar
  21. 21.
    Ramani NC, Sullivan DL, Ekerdt JG, Jehng JM, Wachs IE (1998) Selective oxidation of 1-butene over silica-supported Cr(VI), Mo(VI), and W(VI) oxides. J Catal 176:143–154CrossRefGoogle Scholar
  22. 22.
    Tatibouet JM, Wachs IE (1992) Surface structure and reactivity of CrO3/SiO2 catalysts. J Catal 136:209–221CrossRefGoogle Scholar
  23. 23.
    Kim D, Wachs IE (1993) Surface chemistry of supported chromium oxide catalysts. J Catal 142:166–171CrossRefGoogle Scholar
  24. 24.
    Liotta LF, Venezia AM, Pantaleo G, Deganello G, Gruttadauria M, Noto R (2004) Chromia on silica and zirconia oxides as recyclable oxidizing system: structural and surface characterization of the active chromium species for oxidation reaction. Catal Today 91:231–236CrossRefGoogle Scholar
  25. 25.
    Thüne PC, Linke R, Van Gennip WJH, De Jong AM, Niemantsverdriet JW (2001) Bonding of supported chromium during thermal activation of the CrOx/SiO2 (Phillips) ethylene polymerization catalyst. J Phys Chem B 105:3073–3078CrossRefGoogle Scholar
  26. 26.
    Groppo E, Prestipino C, Cesano F, Bonino F, Bordiga S, Lamberti C, Thüne PC, Niemantsverdriet JW, Zecchina A (2005) In situ, Cr K-edge XAS study on the Phillips catalyst: activation and ethylene polymerization. J Catal 230:98–108CrossRefGoogle Scholar
  27. 27.
    Groppo E, Lamberti C, Bordiga S, Spoto G, Zecchina A (2005) The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: a frontier for the characterization methods. Chem Rev 105:115–184CrossRefGoogle Scholar
  28. 28.
    Zecchina A, Groppo E, Damin A, Prestipino C (2005) Anatomy of catalytic centers in Phillips ethylene polymerization catalyst. Surface and interfacial organometallic chemistry and catalysis, vol 16. Springer, Berlin, pp 1–35Google Scholar
  29. 29.
    Handzlik J, Grybos R, Tielens F (2013) Structure of monomeric chromium (VI) oxide species supported on silica: periodic and cluster DFT studies. J Phys Chem C 117:8138–8149CrossRefGoogle Scholar
  30. 30.
    Duffy JA (1990) Bonding, energy levels, and bands in inorganic solids. Longman, LondonGoogle Scholar
  31. 31.
    Peverati R, Truhlar DG (2011) Improving the accuracy of hybrid meta-GGA density functionals by range separation. J Phys Chem Lett 2:2810–2817CrossRefGoogle Scholar
  32. 32.
    Raghavachari K, Trucks GW (1989) Highly correlated systems. Excitation energies of first row transition metals Sc–cu. J Chem Phys 91:1062–1065CrossRefGoogle Scholar
  33. 33.
    Luo S, Averkiev B, Yang KR, Xu X, Truhlar DG (2014) Density functional theory of open-shell systems. The 3d-series transition-metal atoms and their cations. J Chem Theory Comput 10:102–121CrossRefGoogle Scholar
  34. 34.
    Zhang QQ, Zhao Y, Gong Y, Zhou M (2007) Matrix isolation infrared spectroscopic and theoretical study of dinuclear chromium oxide clusters: Cr2On (n = 2, 4, 6) in solid argon. J Phys Chem A 111:9775–9780CrossRefGoogle Scholar
  35. 35.
    Uzunova EL (2011) Density functional study of the stable oxidation states and the binding of oxygen in MO4 clusters of the 3d elements. J Phys Chem A 115:10665–10678CrossRefGoogle Scholar
  36. 36.
    Uzunova EL (2011) Electronic structure of trioxide, oxoperoxide, oxosuperoxide, and ozonide clusters of the 3d elements: density functional theory study. J Phys Chem A 115:1320–1330CrossRefGoogle Scholar
  37. 37.
    Kumari I, Gupta S, Goel N (2016) A DFT based investigation of NO oxidation by (CrO3)3 cluster. Comput Theor Chem 1091:107–114CrossRefGoogle Scholar
  38. 38.
    Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035CrossRefGoogle Scholar
  39. 39.
    Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian98. Part I. the calculation of energies, gradients, vibrational frequencies and electric field derivatives1. J Mol Struct:THEOCHEM 461:1–21CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Cross O, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, Revision A.1. Gaussian Inc, Wallingford CTGoogle Scholar
  41. 41.
    Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3:214–218CrossRefGoogle Scholar
  42. 42.
    Fukui K (1981) The path of chemical reactions—the IRC approach. Acc Chem Res 14:363–368CrossRefGoogle Scholar
  43. 43.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) Natural bond orbital analysis program: NBO 6.0. Theoretical Chemistry Institute, University of Wisconsin, Madison, WIGoogle Scholar
  44. 44.
    Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc, Shawnee Mission, KSGoogle Scholar
  45. 45.
    Irikura K, Thermo PL (1995) National institute of standards and technology. Gaithesburg, MD, 20899Google Scholar
  46. 46.
    Kaur N, Kumari I, Gupta S, Goel N (2016) Spin inversion phenomenon and two-state reactivity mechanism for direct benzene hydroxylation by V4O10 cluster. J Phys Chem A 120:9588–9597CrossRefGoogle Scholar
  47. 47.
    Bell RC, Castleman AW (2002) Reactions of vanadium oxide cluster ions with 1,3-butadiene and isomers of butene. J Phys Chem A 106:9893–9899CrossRefGoogle Scholar
  48. 48.
    Bond GC (1986) In: Eley DD, Pines H, Weisz PB (eds) Academic, Orlando, FL (1983), 516Google Scholar
  49. 49.
    Atkins P, De Paula J, Keeler J (2018) Atkins’ physical chemistry. Oxford University Press, OxfordGoogle Scholar
  50. 50.
    Shiota Y, Suzuki K, Yoshizawa K (2005) Mechanism for the direct oxidation of benzene to phenol by FeO+. Organometallics 24:3532–3538CrossRefGoogle Scholar
  51. 51.
    Altinay G, Metz RB (2010) Vibrational spectroscopy of intermediates in benzene-to-pheno conversion by FeO+. J Am Soc Mass Spectrom 21:750–757CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Theoretical and Computational Chemistry Group, Department of Chemistry, Centre of Advanced Studies in ChemistryPanjab UniversityChandigarhIndia
  2. 2.Department of Applied Sciences, University Institute of Engineering and TechnologyPanjab UniversityChandigarhIndia

Personalised recommendations