Theoretical studies on the structures, material properties, and IR spectra of polymorphs of 3,4-bis(1H-5-tetrazolyl)furoxan

  • Hong-Wei Xi
  • Siti Zubaidah Binte Mohammad Mazian
  • Hay Yee Serene Chan
  • Huey Hoon Hng
  • Ho Wee GohEmail author
  • Kok Hwa LimEmail author
Original Paper


Theoretical studies on the structures, densities, and heats of formation of conformational isomers of 3,4-bis(1H-5-tetrazolyl)furoxan (H2BTF) were performed based on density functional theory (DFT) calculations. Two stable planar conformational isomers, the face-to-back and the back-to-face conformers, and one stable slightly twisted conformer, the back-to-back conformer, were predicted for H2BTF at the M06-2X/6–311 + G(d,p) level of theory. The face-to-back conformer was calculated to be the most stable conformational isomer on the potential energy surface. No stable face-to-face conformer, whether planar or tilted, was identified in the calculations. The Vienna Ab Initio Simulation Package (VASP) was used in combination with molecular dynamics simulation to explore the stable crystal forms and the densities of the stable conformational isomers. Two of them exhibited high densities: the face-to-back conformer with P21 symmetry (2.01 g/cm3) and the back-to-back conformer with Pna21 symmetry (2.05 g/cm3). Their heats of formation were also predicted to be high when calculated at the same DFT level. The detonation pressures and velocities of these polymorphs, as calculated using the EXPLO5 program, are well above those of many advanced high energy density materials, pointing to the potential use of these conformers as novel explosives with good detonation performance. Also, IR spectra are shown to be able to distinguish these denser polymorphs of H2BTF. This study suggests that it could be worth investigating whether denser polymorphs of H2BTF can be grown.


3,4-Bis(1H-5-tetrazolyl)furoxan HEDM Density Heat of formation Detonation property 



This research was supported by a SIT Ignition Grant (R-MNR-E103-A009).


  1. 1.
    Klapötke T, Stein M, Stierstorfer J (2008) Z Anorg Allg Chem 634:1711Google Scholar
  2. 2.
    Joo YH, Shreeve JM (2010) J Am Chem Soc 132:15081Google Scholar
  3. 3.
    Karaghiosoff K, Klapçtke TM, Sabat CM (2009) Eur J Inorg Chem 2009:238Google Scholar
  4. 4.
    Guo Y, Gao H, Twamley B, Shreeve JM (2007) Adv Mater 19:2884Google Scholar
  5. 5.
    Klapçtke TM, Sabat CM (2008) Chem Mater 20:1750Google Scholar
  6. 6.
    Zheng W, Wang J, Ren X, Chen Z, Tian J, Zhou Y (2010) J Hazard Mater 177:738Google Scholar
  7. 7.
    Huang H, Zhou Z, Liang L, Song J, Wang K, Cao D, Sun W, Bian C, Xue M (2012) Chem Asian J 7:707Google Scholar
  8. 8.
    Zhai LJ, Fan XZ, Wang BZ, Bi FQ, Huo H, Li YN, Li XZ (2015) Chin J Energ. Mater 12:1172Google Scholar
  9. 9.
    Koch W, Holthausen MC (2000) A Chemist’s guide to density functional theory. Wiley-VCH, WeinheimGoogle Scholar
  10. 10.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  11. 11.
    Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215Google Scholar
  12. 12.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650Google Scholar
  13. 13.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639Google Scholar
  14. 14.
    Xi HW, Karni M, Apeloig Y (2008) Polarization and diffuse functions in the basis set were found to be important for the geometry optimization of Si compound. J Phys Chem A 112:13066Google Scholar
  15. 15.
    Frisch MJ et al (2013) Gaussian 09 revision D01. Gaussian, Inc., WallingfordGoogle Scholar
  16. 16.
    Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, New YorkGoogle Scholar
  17. 17.
    Wiberg KB (1968) Tetrahedron 24:1083Google Scholar
  18. 18.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison, WIGoogle Scholar
  19. 19.
    Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, New YorkGoogle Scholar
  20. 20.
    Xi HW, Goh HW, Xu JZ, Lee PPF, Lim KH (2018) J Energ Mater 36:291Google Scholar
  21. 21.
    Baur WH, Kassner D (1992) Acta Crystallogr B48:356Google Scholar
  22. 22.
    Perdew P, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865Google Scholar
  23. 23.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169Google Scholar
  24. 24.
    Kresse G, Hafner J (1993) Phys Rev B 48:13115Google Scholar
  25. 25.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15Google Scholar
  26. 26.
    Blöchl PE (1994) Phys Rev B 50:17953Google Scholar
  27. 27.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758Google Scholar
  28. 28.
    Sysolyatin SV, Lobanova AA, Chernikova YT, Sakovich GV (2005) Russ Chem Rev 74:757Google Scholar
  29. 29.
    Jursic BS (1997) J Mol Struct (THEOCHEM) 417:99Google Scholar
  30. 30.
    Rice BM, Pai SV, Hare J (1999) Combust Flame 118:445Google Scholar
  31. 31.
    Matyushin YuN, Pepekin VI, Golova SP, Godovikova TI, Khmelnitskii LI (1971) Bull Acad Sci USSR Div Chem Sci 22:162Google Scholar
  32. 32.
    Furka Á (2009) Struct Chem 20:605Google Scholar
  33. 33.
    Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23Google Scholar
  34. 34.
    Sućeska M (2017) EXPLO5 6.04 OZM Research™, CzechGoogle Scholar
  35. 35.
    Sućeska M (2004) Mater Sci Forum 465-466:325Google Scholar
  36. 36.
    Ravi P, Gore GM, Tewari SP, Sikder AK (2011) J Energ. Mater 29:209Google Scholar
  37. 37.
    Krishnakumar V, Prabavathi N (2008) Spectrochim Acta A 71:449Google Scholar
  38. 38.
    Scott AP, Radom L (1996) J Phys Chem 100:16502Google Scholar
  39. 39.
    Lu T, Chen F (2012) J Comput Chem 33:580Google Scholar
  40. 40.
    Mellouki A, Liévin J, Herman M (2001) J Chem Phys 271:239Google Scholar
  41. 41.
    Majoube M (1989) J Raman Spectrosc 20:49–60Google Scholar
  42. 42.
    Majoube M, Vergoten G (1992) J Mol Struct 266:345Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hong-Wei Xi
    • 1
  • Siti Zubaidah Binte Mohammad Mazian
    • 1
  • Hay Yee Serene Chan
    • 2
  • Huey Hoon Hng
    • 2
  • Ho Wee Goh
    • 3
    Email author
  • Kok Hwa Lim
    • 1
    Email author
  1. 1.Singapore Institute of TechnologySingaporeSingapore
  2. 2.Energetics Research InstituteNanyang Technological UniversitySingaporeSingapore
  3. 3.ATREC Pte LtdSingaporeSingapore

Personalised recommendations