The chalcogen bond in F2P(S)N⋅⋅⋅SX2, F2PNS⋅⋅⋅SX2, F2PSN⋅⋅⋅SX2 (X = F, Cl, Br, OH, CH3, NH2) complexes

  • Nan Yan
  • Suhong Huo
  • Xiaoyan Li
  • Yanli Zeng
  • Lingpeng MengEmail author
Original Paper


As a kind of intermolecular noncovalent interaction, chalcogen bonding plays a critical role in the fields of chemistry and biology. In this paper, S⋅⋅⋅S chalcogen bonds in three groups of complexes, F2P(S)N⋅⋅⋅SX2, F2PNS⋅⋅⋅SX2, and F2PSN⋅⋅⋅SX2 (X = F, Cl, Br, OH, CH3, NH2), were investigated at the MP2/aug-cc-pVTZ level of theory. The calculated results show that the formation of S⋅⋅⋅S chalcogen bond is in the manner of attraction between the positive molecular electrostatic potential (VS,max) of chalcogen bond donator and the negative VS,min of chalcogen bond acceptor. It is found that a good correlation exists between the S⋅⋅⋅S bond length and the interaction energy. The energy decomposition indicates the electrostatic energy and polarization energy are closely correlated with the total interaction energy. NBO analysis reveals that the charge transfer is rather closely correlated with the polarization, and the charge transfer has a similar behavior as the polarization in the formation of complex. Our results provide a new example for interpreting the noncovalent interaction based on the σ-hole concept.

Graphical abstract

The chalcogen bonds in the studied binary complexes are Coulombic in nature, and the charge transfer has a similar behavior as the polarization in the formation of the complex.


Chalcogen bond MP2 MEP Energy decomposition Coulombic interaction 



This work was supported by the National Natural Science Foundation of China (Contract Nos. 21373075, 21371045, 21372062), the Natural Science Foundation of Hebei Province (Contract No. B2016205042).

Supplementary material

894_2018_3895_MOESM1_ESM.docx (768 kb)
ESM 1 (DOCX 767 kb)


  1. 1.
    Kabelac M, Hobza PH (2007) Stability of nucleic acid bases and base pairs. Phys Chem Chem Phys 9:903–917CrossRefGoogle Scholar
  2. 2.
    Buckingham AD, Ben JE, Mcdowell SAC (2008) The hydrogen bond. Chem Phys Lett 463:1–10CrossRefGoogle Scholar
  3. 3.
    Wendler K, Thar J, Zahn S, Kirchner BE (2010) The hydrogen bond energy. J Phys Chem A 114:9529CrossRefGoogle Scholar
  4. 4.
    Chudzinski MG, Mcclary CA, Taylor MS (2011) Anion receptors composed of hydrogen- and halogen-bond donor groups: modulating selectivity with combinations of distinct noncovalent interactions. J Am Chem Soc 133:10559–10567CrossRefGoogle Scholar
  5. 5.
    Shokri A, Wang Y, O’doherty GA (2013) Hydrogen-bond networks: strengths of different types of hydrogen bonds and an alternative to the low barrier hydrogen-bond proposal. J Am Chem Soc 135:17919–17924CrossRefGoogle Scholar
  6. 6.
    Elstner M, Hobza P, Frauenheim T (2001) Hydrogen bonding andstacking interactions of nucleic acid base pairs: a density-functional-theory based treatment. J Chem Phys 114:5149–5155CrossRefGoogle Scholar
  7. 7.
    ToriiH YM (2010) Properties of halogen atoms for representing intermolecular electrostatic interactions related to halogen bonding and their substituent effects. J Comput Chem 31:107–116CrossRefGoogle Scholar
  8. 8.
    Xu Z, Liu Z, Chen T (2011) Utilization of halogen bond in lead optimization: a case study of rational design of potent phosphodiesterase type 5 (PDE5) inhibitors. J Med Chem 54:5607–5611CrossRefGoogle Scholar
  9. 9.
    Auffinger P, Hays FA, Westhof E (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci U S A 101:16789–16794CrossRefGoogle Scholar
  10. 10.
    Wilcken R, Zimmermann MO, Lange A (2013) Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem 56:1363–1388CrossRefGoogle Scholar
  11. 11.
    Murray JS, Lane P, Clark T (2007) Sigma-hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038CrossRefGoogle Scholar
  12. 12.
    Scheiner S (2012) Sensitivity of noncovalent bonds to intermolecular separation: hydrogen, halogen, chalcogen, and pnicogen bonds. CrystEngComm 15:3119–3124CrossRefGoogle Scholar
  13. 13.
    Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757CrossRefGoogle Scholar
  14. 14.
    Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548CrossRefGoogle Scholar
  15. 15.
    Esrafili MD, Mohammadian-Sabet F (2015) Pnicogen–pnicogen interactions in O2XP:PH2Y complexes (X=H, F, CN; Y=H, OH, OCH3, CH3, NH2). Chem Phys Lett 638:122–127CrossRefGoogle Scholar
  16. 16.
    Shishkin OV, Omelchenko IV, Kalyuzhny AL (2010) Intramolecular S…O chalcogen bond in thioindirubin. Struct Chem 21:1005–1011CrossRefGoogle Scholar
  17. 17.
    Azofra LM, Alkorta I, Scheiner S (2015) Chalcogen bonds in complexes of SOXY (X, Y = F, Cl) with nitrogen bases. J Phys Chem A119:535–541CrossRefGoogle Scholar
  18. 18.
    Nziko VP, Scheiner S (2014) Chalcogen bonding between tetravalent SF4 and amines. J Phys Chem A 11:10849–10856CrossRefGoogle Scholar
  19. 19.
    Li H, Wu Z, Li D (2015) A singlet thiophosphoryl nitrene and its interconversion with thiazyl and thionitroso isomers. J Am Chem Soc 137:10942–10945CrossRefGoogle Scholar
  20. 20.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  21. 21.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2013) Gaussian 09, revision A.02. Gaussian, Inc., WallingfordGoogle Scholar
  22. 22.
    Bulat FA, Toro-Labbe A, Brinck T (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691CrossRefGoogle Scholar
  23. 23.
    Schmidt MW, Baldridge KK, Boatz JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  24. 24.
    Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. 25.
    Moon J, Baek H, Kim J (2016) Ab initio investigation of the ground states of F2P(S)N, F2PNS, and F2PSN. J Phys Chem A 120:9198–9202CrossRefGoogle Scholar
  26. 26.
    Solimannejad M, Gharabaghi M, Scheiner S (2011) SH…N and SH…P blue-shifting H-bonds and N…P interactions in complexes pairing HSN with amines and phosphines. J Chem Phys 134:024312CrossRefGoogle Scholar
  27. 27.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296CrossRefGoogle Scholar
  28. 28.
    Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  29. 29.
    Bondi (1964) A van der Waals Volumes and Radii. J Phys Chem 68:441–451CrossRefGoogle Scholar
  30. 30.
    Bader RFW (1990) Atoms in molecules-a quantum theory. Oxford University Press, OxfordGoogle Scholar
  31. 31.
    Scheiner S (2011) Effects of substituents upon the P…N noncovalent interaction: the limits of its strength. J Phys Chem A 115:11202–11209CrossRefGoogle Scholar
  32. 32.
    Scheiner S (2011) On the properties of X…N noncovalent interactions for first-, second-, and third-row X atoms. J Chem Phys 134:164313CrossRefGoogle Scholar
  33. 33.
    Scheiner S, Adhikari U (2011) Abilities of different electron donors (D) to engage in a P…D noncovalent interaction. J Phys Chem A 115:11101–11110CrossRefGoogle Scholar
  34. 34.
    Kuhne TD, Khaliullin RZ (2014) Nature of the asymmetry in the hydrogen-bond networks of hexagonal ice and liquid water. J Am Chem Soc 136:3395–3399CrossRefGoogle Scholar
  35. 35.
    Politzer P, Murray JS (2017) σ-Hole interactions: perspectives and misconceptions. Crystals 7:212CrossRefGoogle Scholar
  36. 36.
    Politzer P, Murray JS, Clark T (2017) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52CrossRefGoogle Scholar
  37. 37.
    Clark T, Heßelmann A (2018) The coulombic σ-hole model describes bonding in CX3I⋯Y complexes completely. Phys Chem Chem Phys 20:22849–22855 and the references cited therein CrossRefGoogle Scholar
  38. 38.
    Clark T, Murray JS, Politzer P (2018) The σ-Hole coulombic interpretation of trihalide anion formation. ChemPhysChem.
  39. 39.
    Guo X, An X, Li Q (2015) Se…N chalcogen bond and Se…X halogen bond involving F2C horizontal line Se: influence of hybridization, substitution, and cooperativity. J Phys Chem A 119:3518–3527CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nan Yan
    • 1
  • Suhong Huo
    • 1
  • Xiaoyan Li
    • 1
    • 2
  • Yanli Zeng
    • 1
    • 2
  • Lingpeng Meng
    • 1
    • 2
    Email author
  1. 1.College of Chemistry and Material ScienceHebei Normal UniversityShijiazhuangChina
  2. 2.Key Laboratory of Inorganic Nano-materials of Hebei ProvinceShijiazhuangChina

Personalised recommendations