Advertisement

Hydrogenation and hydration of carbon dioxide: a detailed characterization of the reaction mechanisms based on the reaction force and reaction electronic flux analyses

  • Daniela Guzmán-Angel
  • Soledad Gutiérrez-Oliva
  • Alejandro Toro-LabbéEmail author
Original Paper
  • 46 Downloads
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Abstract

A computational DFT study of the reaction mechanism of hydrogenation and hydration of carbon dioxide is presented. It has been found that hydrogenation and hydration are endoenergetic reactions that are carried out in two steps, passing by a stable intermediate that is surrounded by energy barriers of 70 kcal/mol and 10 kcal/mol for hydrogenation and 50 kcal/mol and 10 kcal/mol for hydration. Using the reaction force analysis, we were able to characterize the physical nature of the activation barriers and found that activation energies are mostly due to structural rearrangements. An interesting difference in the reaction mechanisms disclosed by the reaction force and electronic flux analyses is that while in the hydrogenation reaction the mechanisms is conditioned by the H2 cleavage with a high energy barrier, in the hydration reaction the formation of a transient four member ring structure favoring an attractive local hydrogen bond interaction pushes the reaction toward the product with a considerably lower energy barrier.

Keywords

Reaction force analysis Reaction electronic flux Reaction mechanism Hydration reaction of CO2 Hydrogenation reaction of CO2 

Notes

Acknowledgements

This work is dedicated to our dear friend Professor Pratim K. Chattaraj, one of the most brilliant minds that we had the chance to meet along this travel through quantum chemistry. We are deeply thankful to him for showing us the many and often mysterious ways of conceptual DFT. This work was supported by FONDECYT through the project N°1181072. DGA thanks financial support from CONICYT-PCHA/Doctorado Nacional for a Ph.D. fellowship (N° 2016-21161202).

References

  1. 1.
    World Meteorological Organization WMO Greenhouse Gas Bulletin (GHG). Accessed: 2015-11-22Google Scholar
  2. 2.
    Aaron D, Tsouris C (2005) Sep Sci Technol 40(1–3):321CrossRefGoogle Scholar
  3. 3.
    Yang HQ, Xu ZH, Fan MH, Gupta R, Slimane RB, Bland AE, Wright I (2008) J Environ Sci (China) 20(1):14CrossRefGoogle Scholar
  4. 4.
    Férey G (2008) Chem Soc Rev 37:191CrossRefGoogle Scholar
  5. 5.
    Maihom T, Wannakao S, Boekfa B, Limtrakul J (2013) J Phys Chem C 117:17650CrossRefGoogle Scholar
  6. 6.
    Federsel C, Jackstell R, Beller M (2010) Angew Chem Int Ed 49:6254CrossRefGoogle Scholar
  7. 7.
    Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703CrossRefGoogle Scholar
  8. 8.
    Toro-Labbé A (1999) J Phys Chem A 103:4398CrossRefGoogle Scholar
  9. 9.
    Gutiérrez-Oliva S, Herrera B, Toro-Labbé A, Chermette H (2005) J Chem Phys A 109:1748CrossRefGoogle Scholar
  10. 10.
    Politzer P, Toro-Labbé A, Gutiérrez-Oliva S, Herrera B, Jaque P, Concha M, Murray J (2005) J Chem Sci 117:467CrossRefGoogle Scholar
  11. 11.
    Rincón E, Jaque P, Toro-Labbé A (2006) J Chem Phys A 110:9478CrossRefGoogle Scholar
  12. 12.
    Labet V, Morell C, Grand A, Toro-Labbé A (2008) J Chem Phys A 112:11487CrossRefGoogle Scholar
  13. 13.
    Herrera B, Toro-Labbé A (2007) J Chem Phys A 111:5921CrossRefGoogle Scholar
  14. 14.
    Echegaray E, Toro-Labbé A (2008) J Chem Phys A 112:11801CrossRefGoogle Scholar
  15. 15.
    Guzmán-Angel D, Inostroza-Rivera R, Gutiérrez-Oliva S, Herrera B, Toro-Labbé A (2016) Theor Chem Acc 135:37CrossRefGoogle Scholar
  16. 16.
    Duarte F, Toro-Labbé A (2011) J Chem Phys A 115:3050CrossRefGoogle Scholar
  17. 17.
    Cerón ML, Echegaray E, Gutiérrez-Oliva S, Herrera B, Toro-Labbé A (2011) Sci China Chem 54:1982CrossRefGoogle Scholar
  18. 18.
    Vogt-Geisse S, Toro-Labbé A (2009) J Chem Phys 130:244308CrossRefGoogle Scholar
  19. 19.
    Pearson RG (1990) Coord Chem Rev 220:403CrossRefGoogle Scholar
  20. 20.
    Reed A, Curtiss L, Weinhold F (1988) Chem Rev 88:889CrossRefGoogle Scholar
  21. 21.
    Foster J, Weinhold F (1980) J Chem Am Soc 102:7211CrossRefGoogle Scholar
  22. 22.
    Gutiérrez-Oliva S, Herrera B, Toro-Labbé A (2018) J Mol Model 24:4CrossRefGoogle Scholar
  23. 23.
    Villegas-Escobar N, Larsen MH, Gutiérrez-Oliva S, Hashmi ASK, Toro-Labbé A (2017) Chem Eur J 119:26598Google Scholar
  24. 24.
    Ortega D, Gutiérrez-Oliva S, Tantillo DJ, Toro-Labbé A (2015) Phys Chem Chem Phys 17:9771–9779CrossRefGoogle Scholar
  25. 25.
    Ortega DE, Nguyen QNN, Tantillo DJ, Toro-Labbé A (2016) J Comp Chem 37:1068–1081CrossRefGoogle Scholar
  26. 26.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  27. 27.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Parr RG, Levy M, Balduz JL (1982) Rev Phys Lett 49:1691CrossRefGoogle Scholar
  29. 29.
    Perdew JP, Levy M (1983) Phys Rev Lett 51:1884CrossRefGoogle Scholar
  30. 30.
    Koopmans TA (1933) Physica 1:104CrossRefGoogle Scholar
  31. 31.
    Janak JF (1978) Phys Rev B 18:7165CrossRefGoogle Scholar
  32. 32.
    Levy M, Perdew JP, Sahni V (1984) Rev Phys A 30:2745CrossRefGoogle Scholar
  33. 33.
    Cohen AJ, Mori-Sánchez P, Yang W (2011) Chem Rev 112:289CrossRefGoogle Scholar
  34. 34.
    Cohen AJ, Mori-Sánchez P, Yang W (2008) Rev Phys B 77:115123CrossRefGoogle Scholar
  35. 35.
    Zevallos J, Toro-Labbé A (2003) J Chem Chil Soc 48:39CrossRefGoogle Scholar
  36. 36.
    Villegas-Escobar N, Gutiérrez-Oliva S, Toro-Labbé A (2015) J Chem Phys C 119:26598CrossRefGoogle Scholar
  37. 37.
    Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101CrossRefGoogle Scholar
  38. 38.
    Zhao Y, Truhlar DG (2007) Acc Chem Res 41:157CrossRefGoogle Scholar
  39. 39.
    Zhao Y, Truhlar DG (2008) J Chem Phys C 112:6860CrossRefGoogle Scholar
  40. 40.
    Becke A (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  41. 41.
    Lee C, Yang W, Parr R (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  42. 42.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200CrossRefGoogle Scholar
  43. 43.
    Vosko S, Wilk L, Nusair M (1980) Can J Phys 58:1200CrossRefGoogle Scholar
  44. 44.
    Fukui K (1981) Acc Chem Res 14:363CrossRefGoogle Scholar
  45. 45.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A.1. Gaussian Inc Wallingford CTGoogle Scholar
  46. 46.
    Biswas S, Chowdhury A, Roy P, Pramanik A, Sarkar P (2018) Mol J Model 24:224CrossRefGoogle Scholar
  47. 47.
    Rawat KS, Mahata A, Choudhuri I, Pathak B (2016) Chem J Phys C 30:16478CrossRefGoogle Scholar
  48. 48.
    Rawat KS, Mahata A, Pathak B (2016) Chem J Phys C 120:26652CrossRefGoogle Scholar
  49. 49.
    Biswas S, Pramanik A, Sarkar P (2018) Chem Select 3:5185Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de FarmaciaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations