Advertisement

Theoretical study of the effects of modifying the structures of organic dyes based on N,N-alkylamine on their efficiencies as DSSC sensitizers

  • S. ElKhattabiEmail author
  • M. Hachi
  • A. Fitri
  • A. T. Benjelloun
  • M. Benzakour
  • M. Mcharfi
  • M. Bouachrine
Original Paper
  • 21 Downloads

Abstract

In this work, we carried out a theoretical study in which DFT and TD-DFT calculations of a series of six new organic dyes that incorporate N,N-alkylamine as an electron donor and a cyanoacrylic acid group as an electron acceptor and anchoring group were performed. In each dye, the donor and the acceptor were bridged by six different π-conjugated spacers consisting of an auxiliary donor group (3,4-ethylenedioxythiophene, EDOT) or an auxiliary acceptor group (benzothiadiazole, BTZ or diketopyrrolopyrrole, DPP) that was linked to either thiophene or phenyl. EHOMO, ELUMO, Egap, λmax, Eex, the open-circuit photovoltage (Voc), the light-harvesting efficiency (LHE), and the free injection energy (ΔGinject) were calculated for all of the dyes to compare their photovoltaic performance. The effects of the incorporation of an additional acceptor group (DPP or BTZ) or an additional donor group (EDOT) into the π-bridge on the geometry, electronic structure, and photovoltaic performance of each designed dye were explored. The study shows that modifying the dye skeleton can greatly improve the performance of the dye and increase its power conversion efficiency. It also reveals that all of the studied dyes are promising candidates for an effective DSSC sensitizer, especially those that include the acceptor group DPP in the π-bridge.

Keywords

DSSC N,N-alkylamine EDOT BTZ DPP 

Notes

References

  1. 1.
    Regan BO, Grӓtzel M (1991) Nature 353:737Google Scholar
  2. 2.
    Joly D, Pelleja L, Narbey S, Oswald F, Meyer T, Kervella Y, Maldivi P, Clifford JN, Palomares E, Demadrille R (2015) Energy Environ Sci 8:2010Google Scholar
  3. 3.
    Ahmad S, Guillen E, Kavan L, Gratzelc M, Nazeeruddinc MK (2013) Energy Environ Sci 6:3439–3466Google Scholar
  4. 4.
    Shah SAA, Sayyad MH, Wahab F, Khan KA, Munawar MA, Elbohy H, Qiao Q (2016) J Mater Sci Mater Electron 27(5):4501–4507Google Scholar
  5. 5.
    Hagfeldt A, Grӓtzel M (2000) Acc Chem Res 33(5):269–277Google Scholar
  6. 6.
    Gratzel M (2004) J Photochem Photobiol A Chem 164:3–14Google Scholar
  7. 7.
    Agrawal S, Dev P, English NJ, Thampi KR, MacElroy JMD (2011) Chem Sci 3(2):416–424Google Scholar
  8. 8.
    Fitri A, Benjelloun AT, Benzakour M, Mcharfi M, Hamidi M, Bouachrine M (2014) Spectrochim Acta A Mol Biomol Spectrosc 132:232–238Google Scholar
  9. 9.
    Teng C, Yang X, Yang C, Li S, Cheng M, Hagfeldt A, Sun L (2010) J Phys Chem C 114:9101–9110Google Scholar
  10. 10.
    Lee DH, Lee MJ, Song HM, Song BJ, Seo KD, Pastore M, Anselmi C, Fantacci S, De Angelis F, Nazeeruddin MK, Grӓetzel M, Kim HK (2011) Dyes Pigments 91:192–198Google Scholar
  11. 11.
    Wang ZS, Koumura N, Cui Y, Takahashi M, Sekiguchi H, Mori A, Kubo T, Furube A, Hara K (2008) Chem Mater 20:3993–4003Google Scholar
  12. 12.
    Wu YZ, Zhang X, Li WQ, Wang ZS, Tian H, Zhu WH (2012) Adv Energy Mater 2:149–156Google Scholar
  13. 13.
    Hara K, Kurashige M, Dan-oh Y, Kasada C, Shinpo A, Suga S, Sayama K, Arakawa H (2003) New J Chem 27:783Google Scholar
  14. 14.
    Tian H, Yang X, Chen R, Li L, Hagfeldt A, Sun L (2007) Chem Commun 36:3741–3743Google Scholar
  15. 15.
    Zhang J, Li HB, Sun SL, Geng Y, Wu Y, Su ZM (2012) J Mater Chem 22:568Google Scholar
  16. 16.
    Liangw M, Chen J (2013) Chem Soc Rev 42:3453–3488Google Scholar
  17. 17.
    Liu B, Wang R, Mi W, Li X, Yu H (2012) J Mater Chem 22:15379–15387Google Scholar
  18. 18.
    Wang D, Han H, Gao H, Yang Z, Xing Y, Cao H, He W, Wang H, Gu J, Hu H (2016) Synth Met 220:41–47Google Scholar
  19. 19.
    ElKhattabi S, Fitri A, Benjelloun AT, Benzakour M, Mcharfi M, Hamidi M, Bouachrine M (2018) J Mater Environ Sci 9(3):841–853.  https://doi.org/10.26872/jmes.2018.9.3.93
  20. 20.
    Wei S, Lu X, Shi X, Deng Z, Shao Y, Zhao L, Guo W, Wu CL (2014) Int J Photoenergy.  https://doi.org/10.1155/2014/280196
  21. 21.
    Li Y, Xu B, Song P, Ma F, Sun M (2017) J Phys Chem C 121:12546–12561Google Scholar
  22. 22.
    Farré Y, Zhang L, Pellegrin Y, Planchat A, Blart E, Boujtita M, Hammarström L, Jacquemin D, Odobel F (2016) J Phys Chem C 120:7923Google Scholar
  23. 23.
    Duvva N, Raptis D, Kumar CV, Koukaras EN, Giribabu L, Lianos P (2016) Dyes Pigments 134:472–479Google Scholar
  24. 24.
    Li Y, Wang S, Lv Y, Li Y, Wang Q (2017) J Mater Sci Mater Electron 28:1489–1500Google Scholar
  25. 25.
    Farré Y, Raissi M, Fihey A, Pellegrin Y, Blart E (2017) ChemSusChem 10:2618–2625Google Scholar
  26. 26.
    Li W, Liu B, Wu Y, Zhu S, Zhang Q, Zhu W (2013) Dyes Pigments 99:176Google Scholar
  27. 27.
    Imae I, Koshima T, Korai K, Ooyama Y, Komaguchi K, Harima Y (2016) Dyes Pigments 132:262–269Google Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Laham AMA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, revision A02. Gaussian Inc., WallingfordGoogle Scholar
  29. 29.
    Dennington R, Keith T, Millam J (2009) GaussView, v.5.0.8. Semichem Inc., Shawnee MissionGoogle Scholar
  30. 30.
    Becke AD (1993) J Chem Phys 98:1372Google Scholar
  31. 31.
    Jacquemin D, Perpète EA, Ciofini I, Adamo C (2008) Acc Chem Res 42:326–334Google Scholar
  32. 32.
    Pastore M, Mosconi E, De Angelis F, Grӓtzel M (2010) J Phys Chem C 114:7205–7212Google Scholar
  33. 33.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57Google Scholar
  34. 34.
    Tomasi J, Mennucci B, Cancès ET (1999) J Mol Struct THEOCHEM 464:211Google Scholar
  35. 35.
    Yen YS, Chen YC, Chou HH, Huang ST, Lin JT (2012) Polymers 4:1443Google Scholar
  36. 36.
    Sang-aroon W, Saekow S, Amornkitbamrung V (2012) J Photochem Photobiol A Chem 236:35–40Google Scholar
  37. 37.
    Cossi M, Barone V (2001) J Chem Phys 115:4708Google Scholar
  38. 38.
    Park KW, Serrano LA, Ahn S, Baek MH, Wiles AA, Cooke G, Hong J (2017) Tetrahedron 73:1098–1104Google Scholar
  39. 39.
    Xia H-Q, Wang J, Bai F-Q, Zhang H-X (2015) Dyes Pigments 113:87–95Google Scholar
  40. 40.
    Lu X, Wei S, Wu CML, Li S, Guo W (2011) J Phys Chem C 115(9):3753–3761Google Scholar
  41. 41.
    Abdalhadi SM, Connell A, Zhang X, Wiles AA, Davies ML, Holliman PJ, Cooke G (2016) J Mater Chem A 4:15655Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. ElKhattabi
    • 1
    • 2
    Email author
  • M. Hachi
    • 1
  • A. Fitri
    • 1
  • A. T. Benjelloun
    • 1
  • M. Benzakour
    • 1
  • M. Mcharfi
    • 1
  • M. Bouachrine
    • 3
  1. 1.ECIM/LIMME, Faculty of Sciences Dhar El MahrazUniversity Sidi Mohamed Ben AbdallahFezMorocco
  2. 2.LISA, National School of Applied SciencesUniversity Sidi Mohamed Ben AbdallahFezMorocco
  3. 3.LASMAR, ESTUniversity MoulayIsmaïlMeknesMorocco

Personalised recommendations