Advertisement

Mechanistic study on the intramolecular oxa-[4 + 2] cycloaddition of substituted o-divinylbenzenes

  • XingHui ZhangEmail author
Original Paper
  • 33 Downloads

Abstract

This paper reports a detailed computational study of the mechanisms of formation of oxacyclic derivatives from substituted o-divinylbenzenes by a photoinduced intramolecular oxa-[4 + 2] cycloaddition. The reaction mechanism and chemoselectivity of trans, trans- and cis, trans-substituted ortho-divinylbenzene were studied. Detailed density functional theory calculations show that the reaction system proceeds through two main steps: light-active intramolecular cyclization and Diels-Alder reactions of C=O. Trans, trans-products of cycloaddition of substituted o-divinylbenzenes are more favored than cis, trans-products. Compared with different substituents, the cycloaddition reaction of phenyl ketone has a relatively low activation barrier, and the strong electron-withdrawing group on the benzene ring is more favorable for the intramolecular cycloaddition reaction of substituted o-divinylbenzenes.

Keywords

Cycloaddition Substituted o-divinylbenzenes Photoinduced Density functional theory 

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of Department of Education, Gansu Province (2016B-121). We are grateful to the Gansu Province Supercomputer Center for essential support. We are grateful to the reviewers for their invaluable suggestions.

References

  1. 1.
    Bos PH, Antalek MT, Porco Jr JA, Stephenson CRJ (2013) Tandem dienone photorearrangement–cycloaddition for the rapid generation of molecular complexity. J Am Chem Soc 135:17978–17982CrossRefGoogle Scholar
  2. 2.
    Kuznetsov DM, Mukhina OA, Kutateladze AG (2016) Photoassisted synthesis of complex molecular architectures: dearomatization of benzenoid arenes with aza-o-xylylenes via an unprecedented [2+4] reaction topology. Angew Chem Int Ed 55:6988–6991CrossRefGoogle Scholar
  3. 3.
    Cronk WC, Mukhina OA, Kutateladze AG (2016) Photoinduced “double click” cascade offers access to complex polyheterocycles from readily available isatin-based photoprecursors. Org Lett 18:3750–3753CrossRefGoogle Scholar
  4. 4.
    Maeda H, Matsuda S, Mizuno K (2016) Intramolecular photocycloaddition reactions of arylcyclopropane tethered 1-cyanonaphthalenes. J Org Chem 81:8544–8551CrossRefGoogle Scholar
  5. 5.
    Hoffmann N (2008) Photochemical reactions as key steps in organic synthesis. Chem Rev 108:1052–1103CrossRefGoogle Scholar
  6. 6.
    Bach T, Hehn JP (2011) Photochemical reactions as key steps in natural product synthesis. Angew Chem Int Ed 50:1000–1045CrossRefGoogle Scholar
  7. 7.
    Kärkäs MD, Porco JA, Stephenson CRJ (2016) Photochemical approaches to complex chemotypes: applications in natural product synthesis. Chem Rev 116:9683–9747CrossRefGoogle Scholar
  8. 8.
    Ravelli D, Fagnoni M, Albini A (2013) Photoorganocatalysis. What for? Chem Soc Rev 42:97–113CrossRefGoogle Scholar
  9. 9.
    Mitchell LJ, Lewis W, Moody CJ (2013) Solar photochemistry: optimisation of the photo Friedel–Craftsacylation of naphthoquinones. Green Chem 15:2830–2842CrossRefGoogle Scholar
  10. 10.
    Lin ZM, Guo YX, Wang SQ, Wang XN, Chang WQ, Zhou JC, Yuan H, Lou H (2014) Diterpenoids from the chinese liverwort heteroscyphus tener and their antiproliferative effects. J Nat Prod 77:1336–1344CrossRefGoogle Scholar
  11. 11.
    Xu J, Wang M, Sun X, Ren Q, Cao X, Li S, Su G, Tuerhong M, Lee D, Ohizumi Y, Bartlam M, Guo Y (2016) Bioactive terpenoids from salvia plebeia: structures, NO inhibitory activities, and interactions with iNOS. J Nat Prod 79:2924–2932CrossRefGoogle Scholar
  12. 12.
    Bo L, Fan-Di N, Zhong-Wen L, Hong-Jie Z, De-Zu W, Han-Dong S (1991) Diterpenoids from the roots of Salvia przewalskii. Phytochemistry 30:3815–3817CrossRefGoogle Scholar
  13. 13.
    Konoshima T, Kozuka M, Haruna M, Ito K, Kimura T (1989) Studies on the constituents of leguminous plants. XI. The structures of new triterpenoids from Wistaria brachybotrys SIEB. et ZUCC. Chem Pharm Bull 37:1550–1553CrossRefGoogle Scholar
  14. 14.
    Fischer M, Harms K, Koert U (2016) Total syntheses of 7, 20-oxa-bridged dinorditerpenes: antihepatitis C virus active (+)-elevenol from Flueggea virosa and (+)-przewalskin. Org Lett 18:5692–5695CrossRefGoogle Scholar
  15. 15.
    Teng TM, Liu RS (2010) Gold-catalyzed stereocontrolled oxacyclization/[4+2]-cycloaddition cascade of ketone-allene substrates. J Am Chem Soc 132:9298–9300CrossRefGoogle Scholar
  16. 16.
    Luxenburger A (2003) The synthesis of carnosol derivatives. Tetrahedron 59:3297–3305CrossRefGoogle Scholar
  17. 17.
    Oh C, Lee JH, Lee SM, Yi HJ, Hong CS (2009) Divergent insertion reactions of Pt–carbenes generated from [3+2] cyclization of platinum-bound pyrylliums. Chem Eur J 15:71–74CrossRefGoogle Scholar
  18. 18.
    Liu Q, Wang JL, Li DZ, Gao GL, Yang C, Gao Y, Xia WJ (2017) Synthesis of oxatricyclooctanes via photoinduced intramolecular oxa-[4+2] cycloaddition of substituted o-divinylbenzenes. J Org Chem 82:7856–7868CrossRefGoogle Scholar
  19. 19.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision a.01. Gaussian, Inc., WallingfordGoogle Scholar
  20. 20.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241CrossRefGoogle Scholar
  21. 21.
    Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22:976–984CrossRefGoogle Scholar
  22. 22.
    Fang R, Yang LZ, Wang Q (2014) Mechanism and regioselectivity of C–N bond cleavage and ring expansion of N-heterocyclic carbenes. Organometallics 33:53–60CrossRefGoogle Scholar
  23. 23.
    Fell JS, Martin BN, Houk KN (2017) Origins of the unfavorable activation and reaction energies of 1-azadiene heterocycles compared to 2-azadiene heterocycles in Diels–Alder reactions. J Org Chem 82:1912–1919CrossRefGoogle Scholar
  24. 24.
    Zaccaria F, Ehm C, Budzelaar PHM, Busico V (2017) Accurate prediction of copolymerization statistics in molecular olefin polymerization catalysis: the role of entropic, electronic, and steric effects in catalyst comonomer affinity. ACS Catal 7:1512–1519CrossRefGoogle Scholar
  25. 25.
    Zhang XH, Li SS, Wei XL, Lei Y (2018) Computational study of Ru-catalyzed cycloisomerization of 2-alkynylanilides. J Mol Model 24:162CrossRefGoogle Scholar
  26. 26.
    Zhang XH, Geng ZY (2016) Mechanism of the gold(I)-catalyzed synthesis of imidazo-pyrimidines and imidazo-pyrazines via [3 + 2] dipolar cycloaddition: a DFT study. RSC Adv 6:62099–62108CrossRefGoogle Scholar
  27. 27.
    Zhang XH, Jiang LP, Li SS, Wang KT (2017) A theoretical study on platinum-catalyzed cycloisomerization of 2-ethynyl-1-ferrocenylbenzene. Comput Theor Chem 1115:56–62CrossRefGoogle Scholar
  28. 28.
    Siiskonen A, Priimagi A (2017) Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths. J Mol Model 23:50CrossRefGoogle Scholar
  29. 29.
    Zhao Q (2018) Substituent effect of the stacking interaction between carbon monoxide and benzene. J Mol Model 24:136CrossRefGoogle Scholar
  30. 30.
    Mendes RA, Silva BLS, Takeara R, Freitas RG, Brown A, Souza GLC (2018) Probing the antioxidant potential of phloretin and phlorizin through a computational investigation. J Mol Model 24:101CrossRefGoogle Scholar
  31. 31.
    Angulo B, Herrerías CI, Hormigón Z, Mayoral JA, Salvatella L (2018) Copper-catalyzed cyclopropanation reaction of but-2-ene. J Mol Model 24:195CrossRefGoogle Scholar
  32. 32.
    Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161CrossRefGoogle Scholar
  33. 33.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  34. 34.
    Murray JS, Yepes D, Jaque P, Politzer P (2015) Insights into some Diels-Alder cycloadditions via the electrostatic potential and the reaction force constant. Comput Theor Chem 1053:270–280CrossRefGoogle Scholar
  35. 35.
    Politzer P, Murray JS, Yepes D, Jaque P (2014) Driving and retarding forces in a chemical reaction. J Mol Model 20:2351CrossRefGoogle Scholar
  36. 36.
    Politzer P, Murray JS, Jaque P (2013) Perspectives on the reaction force constant. J Mol Model 19:4111CrossRefGoogle Scholar
  37. 37.
    Smela MP, Hoye TR (2018) A traceless tether strategy for achieving formal intermolecular hexadehydro-Diels–Alder reactions. Org Lett 20:5502–5505CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical EngineeringLanzhou University of Arts and ScienceLanzhouChina

Personalised recommendations