Journal of Molecular Modeling

, 24:312 | Cite as

A structural DFT study of MM, GG, MG, and GM alginic acid disaccharides and reactivity of the MG metallic complexes

  • Lahcène Bekri
  • Mourad Zouaoui-Rabah
  • Michael Springborg
  • Majda Sekkal RahalEmail author
Original Paper


The density functional theory method using the B3LYP/6-31G(d,p) level of theory was used to perform isoenergetic maps in order to determine the lower energy conformers of four disaccharides constituting alginic acids, which are based on β-D-mannuronic (M) and α-L-guluronic acid (G), called MM, GG, MG, and GM. The preferred structures are combined to monovalent (Li+, Na+, and K+) cations and further fully optimized, and an isoenergetic map corresponding to the complex (MG2−, 2Na+) was performed. Then, the reactivity of MG complexes with mono- and bivalent cations was studied using the global nucleophilic index. The position selectivity was also predicted using the local nucleophilic indices. It was demonstrated that experimental trends of relative reactivity and regioselectivity of the complexes are correctly predicted using these empirical indices of reactivity.

Graphical abstract

MM, GG, MG, and GM alginic acid disaccharides and reactivity of the MG metallic complexes


DFT method Alginic acids Monovalent and divalent cations Conformations Reactivity 


  1. 1.
    Ribeiro ACF, Fabela I, Sobral AJFN, Verissimo LMP, Barros MCF, Rodrigo MM, Esteso MAE (2014) Diffusion of sodium alginate in aqueous solutions at T = 298.15 K. J Chem Thermodynam 74:263–268CrossRefGoogle Scholar
  2. 2.
    Stewart MB, Gray SR, Vasiljevic T, Orbell JD (2014) Exploring the molecular basis for the metal-mediated assembly of alginate gels. Carbohydr Polym 102:246–253CrossRefGoogle Scholar
  3. 3.
    Agulhon P, Robitzer M, Habas JJ, Quignard F (2014) Influence of both cation and alginate nature on the Rheological behavior of transition metal alginate gels. Carbohydr Polym 112:525–531CrossRefGoogle Scholar
  4. 4.
    Deze EG, Papageorgiou SK, Favvas EP, Katsaros FK (2012) Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: effect of porosity in Cu2+ and Cd2+ ion sorption. Chem Eng J 209:537–546CrossRefGoogle Scholar
  5. 5.
    Wang L-F, Shankar S, Rhim J-W (2017) Properties of alginate-based films reinforced with cellulose fibers and cellulose Nanowhiskers isolated from mulberry pulp. Food Hydrocoll 63:201–208CrossRefGoogle Scholar
  6. 6.
    Stewart MB, Gray RS, Vasiljevic T, Orbell JD (2014) The role of poly-M and poly-GM sequences in the metal-mediated assembly of alginate gels. Carbohydr Polym 112:486–493CrossRefGoogle Scholar
  7. 7.
    Atkins EDT, Isaac DH, Nieduszynski IA, Phelpst CF, Sheehan DK (1974) The polyuronides: their molecular architecture. Polymer 15:263–271CrossRefGoogle Scholar
  8. 8.
    Crudales H, Larsen B, Smidsrqd O (1951) 13C-NMR studies of monomeric composition and sequence in alginate. Carbohydr Res 89:179–191Google Scholar
  9. 9.
    Davarci F, Turan D, Ozcelik B, Poncelet D (2017) The influence of solution viscosities and surface tension on calcium alginate microbead formation using dripping technique. Food Hydrocoll 62:119–127CrossRefGoogle Scholar
  10. 10.
    Angelesc DG, Anastasescu M, Anghel DF (2014) Synthesis and modeling of calcium alginate nanoparticles inquaternary water-in-oil microemulsions. Colloids Surf A: Physicochem Eng Aspects 460:95–103CrossRefGoogle Scholar
  11. 11.
    Menakbi C, Quignard F, Mineva T (2016) Complexation of trivalent metal cations to Mannuronate type alginate models from a density functional study. J Phys Chem B 120:3615–3623CrossRefGoogle Scholar
  12. 12.
    Agulhon P, Robitzer M, David L, Quignard F (2012) Structural regime identification in ionotropic alginate gels: influence of the cation nature and alginate structure. Biomacromolecules 13:215–220CrossRefGoogle Scholar
  13. 13.
    Agulhon P, Markova V, Robitzer M, Quignard F, Mineva T (2012) Structure of alginate gels: interaction of Diuronate units with divalent cations from density functional calculations. Biomacromolecules 13:1899–1907CrossRefGoogle Scholar
  14. 14.
    Plazinski W, Drach M (2015) Binding of bivalent metal cations by α-L-guluronate: insights from the DFT-MD simulations. New J Chem 39:3987–3994CrossRefGoogle Scholar
  15. 15.
    Ko YG, Lee HJ, Chun YJ, Choi US, Yoo KP (2013) Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field. ACS Appl Mater Interfaces 5:1122–1130CrossRefGoogle Scholar
  16. 16.
    Giammanco GE, Sosnofsky CT, Ostrowski AD (2015) Light-responsive iron(III)−polysaccharide coordination hydrogels for controlled delivery. ACS Appl Mater Interfaces 7:3068–3076CrossRefGoogle Scholar
  17. 17.
    Taleb-Mokhtari IN, Rahal-Sekkal M, Vergoten G (2003) Modified UBFF calculations of the α-L-fucopyranose molecule in the crystalline state. Spectrochim Acta A 59:607–616CrossRefGoogle Scholar
  18. 18.
    Sekkal N, Taleb-Mokhtari IN, Sekkal-Rahal M, Bleckmann P, Vergoten G (2003) Harmonic dynamics of α- and β-methyl-D-galactopyranoside in the crystalline state. Spectrochim Acta A 59:2883–2896CrossRefGoogle Scholar
  19. 19.
    Fodil R, Sekkal-Rahal M, Sayede A (2017) Testing the CP correction procedure with different DFT methods on H-bonding complexes of κ-carrabiose with water molecules. J Mol Model 23:31CrossRefGoogle Scholar
  20. 20.
    Berrekhchi-Berrahma-Bestaoui N, Derreumaux P, Sekkal-Rahal M, Springborg M, Sayede A, Yousfi N, Kadoun A (2013) Density functional conformational study of 2-O-sulphated 3,6 anhydro-α-D-galactose and of neo- κ- and ι-carrabiose molecules. J Mol Model 19(2):893–904CrossRefGoogle Scholar
  21. 21.
    Yousfi N, Sekkal-Rahal M, Sayede A, Springborg M (2010) Relaxed energetic maps of κ-carrabiose: a DFT study. J Comput Chem 31:1312–1320PubMedGoogle Scholar
  22. 22.
    Bestaoui-Berrekhchi-Berrahma N, Sekkal-Rahal M, Derreumaux P, Yousfi N (2016) MP2 and DFT studies of β-D-neocarrabiose and β-D-neocarrabiose monohydrate. Comput Theo Chem 1091:24–30CrossRefGoogle Scholar
  23. 23.
    Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org Chem 73:4615–4624CrossRefGoogle Scholar
  24. 24.
    Pérez P, Domingo LR, Aurell MJ, Contreras R (2003) Quantitative characterization of the global electrophilicity pattern of some reagents involved in 1,3-dipolar cycloaddition reactions. Tetrahedron 59:3117–3125CrossRefGoogle Scholar
  25. 25.
    Quignard F, Valentinw R, Renzo DF (2008) Aerogel materials from marine polysaccharides. New J Chem 32:1300–1310CrossRefGoogle Scholar
  26. 26.
    Wang N, Liu Q, Kang D, Gu J, Zhang W, Zhang D (2016) Facile self-crosslinking synthesis of 3D nanoporous Co3O4/carbon hybrid electrode materials for supercapacitors. ACS Appl Mater Interfaces 8(25):16035–16044CrossRefGoogle Scholar
  27. 27.
    Kang D, Liu Q, Chen M, Gu J, Zhang D (2016) Spontaneous cross-linking for fabrication of nanohybrids embedded with size-controllable particles. ACS Nano 10:889–898CrossRefGoogle Scholar
  28. 28.
    Zhang B, Yang H, Tang H, Hao G, Zhang Y, Deng S (2017) Insights into cryoprotective roles of carrageenan oligosaccharides in peeled whiteleg shrimp (Litopenaeus vannamei) during frozen storage. J Agric Food Chem 65(8):1792–1801CrossRefGoogle Scholar
  29. 29.
    Brus J, Urbanova M, Czernek J, Pavelkova M, Kubova K, Vyslouzil J, Abbrent S, Konefal R, Horsky J, Vetchy D, Vyslouzil J, Kulich P (2017) Structure and dynamics of alginate gels cross-linked by polyvalent ions probed via solid state NMR spectroscopy. Biomacromolecules 18(8):2478–2488CrossRefGoogle Scholar
  30. 30.
    Hossain KS, Miyanaga K, Maeda H, Nemoto N (2001) Sol-gel transition behavior of pure i-carrageenan in both salt-free and added salt states. Biomacromolecules 2:442–449CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci BG, Petersson A et al (2009) Gaussian09. Gaussian Inc, WallingfordGoogle Scholar
  32. 32.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:864–871CrossRefGoogle Scholar
  33. 33.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133–1138CrossRefGoogle Scholar
  34. 34.
    Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  35. 35.
    Seal P, Jha PC, Chakrabarti S (2008) Static first order Hyperpolarizabilities of DNA base pairs: a configuration interaction study. J Mol Struc Theochem 855:64–68CrossRefGoogle Scholar
  36. 36.
    Franzen PL, Zilio SC, Machado AEH, Madurro JM, Brito-Madurro AG, Ueno LT, Sampaio RN, Barbosa Neto NM (2008) Experimental and theoretical investigation of first Hyperpolarizability in Aminophenols. J Mol Struc 892:254–260CrossRefGoogle Scholar
  37. 37.
    Mc Goverin CM, Walsh TJ, Gordon KC, Kay AJ, Woolhouse AD (2007) Predicting nonlinear optical properties in push–pull molecules based on methyl pyridinium donor and 3-cyano-5,5-dimethyl-2(5H)-furanylidene-propanedinitrile acceptor units using vibrational spectroscopy and density functional theory. Chem Phys Lett 443:298–303CrossRefGoogle Scholar
  38. 38.
    Parr RG, Donnelly RA, Levy M, Palke W (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807CrossRefGoogle Scholar
  39. 39.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512CrossRefGoogle Scholar
  40. 40.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  41. 41.
    Koopmans TA (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113CrossRefGoogle Scholar
  42. 42.
    Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922CrossRefGoogle Scholar
  43. 43.
    Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008) A further exploration of a Nucleophilicity index based on the gas-phase ionization potentials. J Mol Struct THEOCHEM 865:68–72CrossRefGoogle Scholar
  44. 44.
    Parr RG, Yang W (1984) Density functional approach to the frontier-Electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050CrossRefGoogle Scholar
  45. 45.
    Yang W, Mortier W (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711CrossRefGoogle Scholar
  46. 46.
    Pérez P, Domingo LR, Duque-Noreña M, Chamorro E (2009) A condensed-to-atom nucleophilicity index. an application to the director effects on the electrophilic aromatic substitutions. J Mol Struct Theochem 895:86–91CrossRefGoogle Scholar
  47. 47.
    Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. J Chem Phys 23:1833–1840CrossRefGoogle Scholar
  48. 48.
    Cossi M, Scalmani G, Rega N, Barone V (2002) New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys 117:43–54CrossRefGoogle Scholar
  49. 49.
    Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681CrossRefGoogle Scholar
  50. 50.
    Braccini I, Peérez S (2001) Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules 2:1089–1096CrossRefGoogle Scholar
  51. 51.
    Braccini I, Grasso RP, Pérez S (1999) Conformational and configurational features of acidic polysaccharides and their interactions with calcium ions: a molecular modeling investigation. Carbohydr Res 317:119–130CrossRefGoogle Scholar
  52. 52.
    Dalheim MØ, Vanacker J, Najmi MA, Aachmann FL, Strand BL, Christensen BE (2016) Efficient functionalization of alginate biomaterials. Biomaterials 80:146–156CrossRefGoogle Scholar
  53. 53.
    Yang J-S, Xie Y-J, He W (2011) Research progress on chemical modification of alginates: a review. Carbohydr Polym 84:33–39CrossRefGoogle Scholar
  54. 54.
    Chattaraj PK, Sengupta S (1999) Chemical hardness as a possible diagnostic of the chaotic dynamics of Rydberg atoms in an external field. J Phys Chem A 103:6122–6126CrossRefGoogle Scholar
  55. 55.
    Prabavathi N, Nilufer A, Krishnakumar V (2013) Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation, conformational stability, NLO properties, HOMO–LUMO and NBO analysis of hydroxyquinoline derivatives by density functional theory calculations. Spectrochim Acta Part A 114:449–474CrossRefGoogle Scholar
  56. 56.
    Karnan M, Balachandran V, Murugan M, Murali MK, Nataraj A (2013) Vibrational (FT-IR and FT-Raman) spectra, NBO, HOMO–LUMO, molecular electrostatic potential surface and computational analysis of 4-(trifluoromethyl)benzylbromide. Spectrochim Acta Part A 116:84–95CrossRefGoogle Scholar
  57. 57.
    Prabavathi N, Nilufer A, Krishnakumar V (2013) Vibrational spectroscopic (FT-IR and FT-Raman) studies, natural bond orbital analysis and molecular electrostatic potential surface of isoxanthopterin. Spectrochim Acta Part A 114:101–113CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lahcène Bekri
    • 1
  • Mourad Zouaoui-Rabah
    • 1
  • Michael Springborg
    • 2
  • Majda Sekkal Rahal
    • 1
    Email author
  1. 1.Department of Chemistry, Faculty of Exact SciencesUniversity Djillali Liabès of Sidi Bel-AbbèsSidi Bel-AbbèsAlgeria
  2. 2.Physikalische und Theoretische ChemieUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations