Journal of Molecular Modeling

, 24:308 | Cite as

Sensor applications of polypyrrole for oxynitrogen analytes: a DFT study

  • Fatima Wasim
  • Naveen Kosar
  • Tariq MahmoodEmail author
  • Khurshid AyubEmail author
Original Paper


Density functional theory calculations are performed to evaluate the sensing ability of polypyrrole for oxynitrogen analytes. Interaction energies of PPy-X (X = NO2, NO2, and NO) are calculated at B3LYP-CP/6-31G(d) and B3LYP/6-31G(d) levels of theory and compared with the high level calibrated method (M05-2X/aug-cc-pVDZ). B3LYP-CP/6-31G(d) gives the best correlation with the high level calibrated method compared to B3LYP/6-31G(d). Interaction of oligopyrrole with analytes shows a significant effect on the geometric and electronic properties; the conjugation is increased in the pyrrole oligomers and movement of charge is increased over the polymeric backbone. The charge is transferred from analytes to pyrrole oligomers (except nPy-NO2), and a more pronounced effect of charge transfer is observed in the case of nitrite ion (NO2) compared to NO. In nPy-NO2, the charge is transferred from polymer to analyte. This transfer of charge indicates the n-type doping effect of analytes. The HOMO-LUMO gap decreases after interaction with analytes, which results in a drop of resistance (conductivity increases). These theoretical outcomes are consistent with the experimental results; polypyrrole has more sensing ability toward the nitrite anion (NO2).

Graphical abstract

High sensitivity of polypyrrole towards NO over NO2 and NO2


Sensors Polypyrrole Oxynitrogen analytes Density functional theory 



The authors acknowledge the Higher Education Commission of Pakistan (Grant No. 3013 and 5309) and COMSATS University, Abbottabad Campus.

Compliance with ethical standards

Ethical statements

1. The manuscript has not been submitted to more than one journal for simultaneous consideration.

2. The manuscript has not been published previously (partly or in full)

3. A single study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time (e.g., “salami-publishing”).

4. No data have been fabricated or manipulated (including images) to support conclusions.

5. No data, text, or theories by others are presented as if they were the author’s own (“plagiarism”) without proper acknowledgements to other’s work if quoted.

Supplementary material

894_2018_3843_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1560 kb)


  1. 1.
    Gerard M (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17:345–359CrossRefGoogle Scholar
  2. 2.
    Qu L, Shi G, Yuan J et al (2004) Preparation of polypyrrole microstructures by direct electrochemical oxidation of pyrrole in an aqueous solution of camphorsulfonic acid. J Electroanal Chem 561:149–156CrossRefGoogle Scholar
  3. 3.
    Gracia R, Mecerreyes D (2013) Polymers with redox properties: materials for batteries, biosensors and more. Polym Chem 4:2206CrossRefGoogle Scholar
  4. 4.
    Coakley KM, McGehee MD (2004) Conjugated polymer photovoltaic cells. Chem Mater 16:4533–4542CrossRefGoogle Scholar
  5. 5.
    Cho Y-J, Lim D-H, Jo N-J (2011) Fabrication of ion selective sensor using conducting polymer actuator. Mater Res Innov 15:s59–s62CrossRefGoogle Scholar
  6. 6.
    Lange U, Roznyatovskaya NV, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays. Anal Chim Acta 614:1–26CrossRefGoogle Scholar
  7. 7.
    Peng H, Zhang L, Soeller C, Travas-Sejdic J (2009) Conducting polymers for electrochemical DNA sensing. Biomaterials 30:2132–2148CrossRefGoogle Scholar
  8. 8.
    Baetens R, Jelle BP, Gustavsen A (2010) Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol Energy Mater Sol Cells 94:87–105CrossRefGoogle Scholar
  9. 9.
    Kulesza PJ, Matczak M, Wolkiewicz A et al (1999) Electrocatalytic properties of conducting polymer based composite film containing dispersed platinum microparticles towards oxidation of methanol. Electrochim Acta 44:2131–2137CrossRefGoogle Scholar
  10. 10.
    AlSalhi MS, Alam J, Dass LA, Raja M (2011) Recent advances in conjugated polymers for light emitting devices. Int J Mol Sci 12:2036–2054CrossRefGoogle Scholar
  11. 11.
    Vernitskaya TV, Efimov ON (1997) Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ Chem Rev 66:443–457CrossRefGoogle Scholar
  12. 12.
    Ramanavičius A, Ramanavičienė A, Malinauskas A (2006) Electrochemical sensors based on conducting polymer—polypyrrole. Electrochim. Acta 51:6025–6037CrossRefGoogle Scholar
  13. 13.
    Proń A, Kucharski Z, Budrowski C et al (1985) Mössbauer spectroscopy studies of selected conducting polypyrroles. J Chem Phys 83:5923–5927CrossRefGoogle Scholar
  14. 14.
    Kang ET, Ti HC, Neoh KG, Tan TC (1988) ESCA analysis of polymer–acceptor interactions in chemically synthesized Polypyrrole–halogen complexes. Polym J 20:399–406CrossRefGoogle Scholar
  15. 15.
    Schmidt H-L, Gutberlet F, Schuhmann W (1993) New principles of amperometric enzyme electrodes and of reagentless oxidoreductase biosensors. Sensors Actuators B Chem. 13:366–371CrossRefGoogle Scholar
  16. 16.
    George PM, LaVan DA, Burdick JA et al (2006) Electrically controlled drug delivery from biotin-doped conductive Polypyrrole. Adv Mater 18:577–581CrossRefGoogle Scholar
  17. 17.
    Geetha S, Rao CRK, Vijayan M, Trivedi DC (2006) Biosensing and drug delivery by polypyrrole. Anal Chim Acta 568:119–125CrossRefGoogle Scholar
  18. 18.
    Hernandez SC, Chaudhuri D, Chen W et al (2007) Single Polypyrrole nanowire Ammonia gas sensor. Electroanalysis 19:2125–2130CrossRefGoogle Scholar
  19. 19.
    Suri K, Annapoorni S, Sarkar AK, Tandon RP (2002) Gas and humidity sensors based on iron oxide–polypyrrole nanocomposites. Sensors Actuators B Chem 81:277–282CrossRefGoogle Scholar
  20. 20.
    Paul S, Amalraj F, Radhakrishnan S (2009) CO sensor based on polypyrrole functionalized with iron porphyrin. Synth Met 159:1019–1023CrossRefGoogle Scholar
  21. 21.
    Waghuley SA, Yenorkar SM, Yawale SS, Yawale SP (2008) Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor. Sensors Actuators B Chem. 128:366–373CrossRefGoogle Scholar
  22. 22.
    Kharat HJ, Kakde KP, Savale PA et al (2007) Synthesis of polypyrrole films for the development of ammonia sensor. Polym Adv Technol 18:397–402CrossRefGoogle Scholar
  23. 23.
    Rau J-R, Chen S-C, Sun H-W (1994) Characterization of a polypyrrole microsensor for nitrate and nitrite ions. Electrochim Acta 39:2773–2779CrossRefGoogle Scholar
  24. 24.
    Tu X, Gao Y, Yue R et al (2012) An amperometric nitrate sensor based on well-aligned cone-shaped polypyrrole-nanorods. Anal Methods 4:4182CrossRefGoogle Scholar
  25. 25.
    Navale ST, Mane AT, Chougule MA et al (2014) Highly selective and sensitive room temperature NO2 gas sensor based on polypyrrole thin films. Synth Met 189:94–99CrossRefGoogle Scholar
  26. 26.
    Rad AS, Nasimi N, Jafari M et al (2015) Ab-initio study of interaction of some atmospheric gases (SO2, NH3, H2O, CO, CH4 and CO2) with polypyrrole (3PPy) gas sensor: DFT calculations. Sensors Actuators B Chem 220:641–651CrossRefGoogle Scholar
  27. 27.
    Bibi S, Ullah H, Ahmad SM et al (2015) Molecular and electronic structure elucidation of Polypyrrole gas sensors. J Phys Chem C 119:15994–16003CrossRefGoogle Scholar
  28. 28.
    Sajid H, Mahmood T, Ayub K (2017) An accurate comparative theoretical study of the interaction of furan, pyrrole, and thiophene with various gaseous analytes. J Mol Model 23:295CrossRefGoogle Scholar
  29. 29.
    Sajid H, Mahmood T, Ayub K (2018) High sensitivity of polypyrrole sensor for uric acid over urea, acetamide and sulfonamide: a density functional theory study. Synth Met 235:49–60CrossRefGoogle Scholar
  30. 30.
    Wasim F, Mahmood T, Ayub K (2016) An accurate cost effective DFT approach to study the sensing behaviour of polypyrrole towards nitrate ions in gas and aqueous phases. Phys Chem Chem Phys 18:19236–19247CrossRefGoogle Scholar
  31. 31.
    Zouzelka R, Rathousky J (2017) Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology. Appl Catal B Environ 217:466–476CrossRefGoogle Scholar
  32. 32.
    Ogidiama OV, Shamim T (2015) Investigation of dual LayeredSCR systems for NOx control. Energy Procedia 75:2345–2350CrossRefGoogle Scholar
  33. 33.
    Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367CrossRefGoogle Scholar
  34. 34.
    Voskuil MI, Schnappinger D, Visconti KC et al (2003) Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198:705–713CrossRefGoogle Scholar
  35. 35.
    Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. Q J R Meteorol Soc 96:320–325CrossRefGoogle Scholar
  36. 36.
    Ueda T, Bhuiyan MMH, Norimatsu H et al (2008) Development of carbon nanotube-based gas sensors for NOx gas detection working at low temperature. Physica E 40:2272–2277CrossRefGoogle Scholar
  37. 37.
    Huusko J, Lantto V, Torvela H (1993) TiO2 thick-film gas sensors and their suitability for NOx monitoring. Sensors Actuators B Chem. 16:245–248CrossRefGoogle Scholar
  38. 38.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JÁ Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian D01. Gaussian Inc., WallingfordGoogle Scholar
  39. 39.
    John M, Todd K, Dennington R (2009) GaussView 05. Semichem, Inc., Shawnee MissionGoogle Scholar
  40. 40.
    Limas NG, Manz TA (2016) Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials. RSC Adv 6:45727–45747CrossRefGoogle Scholar
  41. 41.
    Marinelli F, Dell’Aquila A, Torsi L et al (2009) An organic field effect transistor as a selective NOx sensor operated at room temperature. Sensors Actuators B Chem 140:445–450CrossRefGoogle Scholar
  42. 42.
    Arshad MN, Asiri AM, Alamry KA et al (2015) Synthesis, crystal structure, spectroscopic and density functional theory (DFT) study of N-[3-anthracen-9-yl-1-(4-bromo-phenyl)-allylidene]-N-benzenesulfonohydrazine. Spectrochim Acta Part A Mol Biomol Spectrosc 142:364–374CrossRefGoogle Scholar
  43. 43.
    Rasool N, Kanwal A, Rasheed T et al (2016) One pot selective Arylation of 2-Bromo-5-Chloro Thiophene; molecular structure investigation via density functional theory (DFT), X-ray analysis, and their biological activities. Int J Mol Sci 17:912CrossRefGoogle Scholar
  44. 44.
    Sherzaman S, Sadiq-ur-Rehman AMN et al (2017) Thiobiuret based Ni(II) and co(III) complexes: synthesis, molecular structures and DFT studies. J Mol Struct 1148:388–396CrossRefGoogle Scholar
  45. 45.
    Ahmed MN, Yasin KA, Hameed S et al (2017) Synthesis, structural studies and biological activities of three new 2-(pentadecylthio)-5-aryl-1,3,4-oxadiazoles. J Mol Struct 1129:50–59CrossRefGoogle Scholar
  46. 46.
    Ahmad G, Rasool N, Ikram H et al (2017) Efficient synthesis of novel pyridine-based derivatives via Suzuki cross-coupling reaction of commercially available 5-Bromo-2-methylpyridin-3-amine: quantum mechanical investigations and biological activities. Molecules 22:190CrossRefGoogle Scholar
  47. 47.
    Leenaerts O, Partoens B, Peeters FM (2008) Adsorption of H2O, NH3, CO, NO and NO2 on graphene. Phys Rev B 77:125416CrossRefGoogle Scholar
  48. 48.
    Arshad M, Jadoon M, Iqbal Z et al (2017) Synthesis, molecular structure, quantum mechanical studies and urease inhibition assay of two new isatin derived sulfonylhydrazides. J Mol Struct 1133:80–89CrossRefGoogle Scholar
  49. 49.
    Ahmed MN, Sadiq B, Al-Masoudi NA et al (2018) Synthesis, crystal structures, computational studies and antimicrobial activity of new designed bis((5-aryl-1,3,4-oxadiazol-2-yl)thio)alkanes. J Mol Struct 1155:403–413CrossRefGoogle Scholar
  50. 50.
    Rahman TU, Arfan M, Mahmood T et al (2015) Isolation, spectroscopic and density functional theory studies of 7-(4-methoxyphenyl)-9H-furo[2,3-f]chromen-9-one: a new flavonoid from the bark of Millettia ovalifolia. Spectrochim Acta Part A Mol Biomol Spectrosc 146:24–32CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryCOMSATS UniversityAbbottabadPakistan

Personalised recommendations