Advertisement

Structure, electronic properties, and NBO and TD-DFT analyses of nickel(II), zinc(II), and palladium(II) complexes based on Schiff-base ligands

  • Amina Guelai
  • Houari Brahim
  • Abdelkrim Guendouzi
  • Mostefa Boumediene
  • Sefia Brahim
Original Paper
  • 39 Downloads

Abstract

In this work we studied the structural and electronic properties of the metal–Schiff base complexes Ni\( {\mathrm{L}}_2^2 \) (1), Pd\( {\mathrm{L}}_2^1 \) (2), Zn\( {\mathrm{L}}_2^2 \) (3), and Ni\( {\mathrm{L}}_2^1 \)(4), where L1 and L2 are Schiff bases synthesized from salicylaldehyde and 2-hydroxy-5-methylbenzaldehyde, respectively. Natural bond analysis showed that in complexes 1 and 2, the metal ion coordinates to the ligands through electron donation from lone pairs on ligand nitrogen and oxygen atoms to s and d orbitals on the metal ion. In complex 3, metal–N and metal–O bonds are formed through charge transfer from the lone pairs on nitrogen and oxygen atoms to an s orbital of Zn. Dimethylation of the phenolate rings in the ligands decreases the energy gap and redshifts the spectrum of the nickel complex. The main absorptions observed were assigned on the basis of singlet-state transitions. The simulated spectra of the two complexes 1 and 2 are characterized by excited states with ligand-to-ligand charge-transfer (LLCT), metal-to-ligand charge-transfer (MLCT), ligand-to-metal charge-transfer (LMCT), and metal-centered (MC) character.

Graphical abstract

Geometric structure of the palladium complex.

Keywords

TD-DFT Schiff base Complexes Absorption spectrum Nickel(II) Zinc(II) Palladium(II) Excited states NBO 

Supplementary material

894_2018_3839_MOESM1_ESM.docx (968 kb)
ESM 1 (DOCX 968 kb)

References

  1. 1.
    Amiri Rudbari H, Riahi Farsani M, Lanza S, Bruno G, Yadollahi B (2015) Chirality at octahedral centres determined by tetradentate Schiff base ligands. C R Chim 18:391–398.  https://doi.org/10.1016/j.crci.2014.06.002 CrossRefGoogle Scholar
  2. 2.
    Chakraborty S, Bhattacharjee CR, Mondal P, Prasad SK, Rao DSS (2015) Synthesis and aggregation behaviour of luminescent mesomorphic zinc(II) complexes with ‘salen’ type asymmetric Schiff base ligands. Dalton Trans 44:7477–7488.  https://doi.org/10.1039/c4dt03989k
  3. 3.
    Rezaeivala M, Keypour H (2014) Schiff base and non-Schiff base macrocyclic ligands and complexes incorporating the pyridine moiety—the first 50 years. Coord Chem Rev 280:203–253.  https://doi.org/10.1016/j.ccr.2014.06.007
  4. 4.
    Wu F, Wang C-J, Lin H, Jia A-Q, Zhang Q-F (2018) Syntheses, structures and catalytic properties of ruthenium(II) nitrosyl complexes with bidentate and tetradentate Schiff base ligands. Inorg Chim Acta 471:718–723.  https://doi.org/10.1016/j.ica.2017.12.004 CrossRefGoogle Scholar
  5. 5.
    Ajlouni AM, Abu-Salem Q, Taha ZA, Hijazi AK, Al Momani W (2016) Synthesis, characterization, biological activities and luminescent properties of lanthanide complexes with [2-thiophenecarboxylic acid, 2-(2-pyridinylmethylene)hydrazide] Schiff bases ligand. J Rare Earths 34:986–993.  https://doi.org/10.1016/s1002-0721(16)60125-4 CrossRefGoogle Scholar
  6. 6.
    Keypour H, Shooshtari A, Rezaeivala M, Mohsenzadeh F, Rudbari HA (2015) Synthesis and characterization of transition metal complexes of a hexadentate N4O2 donor Schiff base ligand: X-ray crystal structures of the copper(II) and zinc(II) complexes and their antibacterial properties. Transition Met Chem (London) 40:715–722.  https://doi.org/10.1007/s11243-015-9966-6
  7. 7.
    Mahapatra DK, Das D, Shivhare R (2017) Substituted thiazole linked murrayanine-Schiff’s base derivatives as potential anti-breast cancer candidates: future EGFR kinase inhibitors. Int J Pharm Sci Drug Res 9:139–144.  https://doi.org/10.25004/ijpsdr.2017.090307
  8. 8.
    Sun WH, Li KH, Liu H, Gu YT, Zhang Y, You ZL, Li W (2017) Synthesis, characterization, crystal structures, and antibacterial activity of polynuclear nickel(II) and copper(II) complexes with similar tridentate Schiff bases. Russ J Coord Chem 43:693–699.  https://doi.org/10.1134/s1070328417100104 CrossRefGoogle Scholar
  9. 9.
    Khorshidifard M, Amiri Rudbari H, Kazemi-Delikani Z, Mirkhani V, Azadbakht R (2015) Synthesis, characterization and X-ray crystal structures of vanadium(IV), cobalt(III), copper(II) and zinc(II) complexes derived from an asymmetric bidentate Schiff-base ligand at ambient temperature. J Mol Struct 1081:494–505.  https://doi.org/10.1016/j.molstruc.2014.10.071 CrossRefGoogle Scholar
  10. 10.
    Majumder S, Bhattacharya A, Naskar JP, Mitra P, Chowdhury S (2013) An oxorhenium(V) Schiff-base complex: synthesis, characterisation, structure, spectroscopic and electrochemical aspects. Inorg Chim Acta 399:166–171.  https://doi.org/10.1016/j.ica.2013.01.018 CrossRefGoogle Scholar
  11. 11.
    Poulter N, Donaldson M, Mulley G, Duque L, Waterfield N, Shard AG, Spencer S, Jenkins ATA, Johnson AL (2011) Plasma deposited metal Schiff-base compounds as antimicrobials. New J Chem 35:1477.  https://doi.org/10.1039/c1nj20091g CrossRefGoogle Scholar
  12. 12.
    Amiri Rudbari H, Iravani MR, Moazam V, Askari B, Khorshidifard M, Habibi N, Bruno G (2016) Synthesis, characterization, X-ray crystal structures and antibacterial activities of Schiff base ligands derived from allylamine and their vanadium(IV), cobalt(III), nickel(II), copper(II), zinc(II) and palladium(II) complexes. J Mol Struct 1125:113–120.  https://doi.org/10.1016/j.molstruc.2016.06.055 CrossRefGoogle Scholar
  13. 13.
    Devi N, Sarma K, Rahaman R, Barman P (2018) Synthesis of a new series of Ni(II), Cu(II), Co(II) and Pd(II) complexes with an ONS donor Schiff base: crystal structure, DFT study and catalytic investigation of palladium and nickel complexes towards deacylative sulfenylation of active methylenes and regioselective 3-sulfenylation of indoles via thiouronium salt formation. Dalton Trans 47:4583–4595.  https://doi.org/10.1039/c7dt04635a
  14. 14.
    Mahmoud WH, Deghadi RG, Mohamed GG (2018) Metal complexes of novel Schiff base derived from iron sandwiched organometallic and 4-nitro-1,2-phenylenediamine: synthesis, characterization, DFT studies, antimicrobial activities and molecular docking. Appl Organomet Chem 32:e4289.  https://doi.org/10.1002/aoc.4289 CrossRefGoogle Scholar
  15. 15.
    Salehi M, Faghani F, Kubicki M, Bayat M (2018) New complexes of Ni(II) and Cu(II) with tridentate ONO Schiff base ligand: synthesis, crystal structures, electrochemical and theoretical investigation. J Iran Chem Soc 15:2229–2240.  https://doi.org/10.1007/s13738-018-1412-1 CrossRefGoogle Scholar
  16. 16.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648.  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  17. 17.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871.  https://doi.org/10.1103/physrev.136.b864 CrossRefGoogle Scholar
  18. 18.
    Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789.  https://doi.org/10.1103/physrevb.37.785
  19. 19.
    Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664.  https://doi.org/10.1063/1.475428 CrossRefGoogle Scholar
  20. 20.
    Binning RC, Curtiss LA (1990) Compact contracted basis sets for third-row atoms: Ga–Kr. J Comput Chem 11:1206–1216.  https://doi.org/10.1002/jcc.540111013
  21. 21.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650.  https://doi.org/10.1063/1.438955 CrossRefGoogle Scholar
  22. 22.
    McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J Chem Phys 72:5639.  https://doi.org/10.1063/1.438980 CrossRefGoogle Scholar
  23. 23.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270.  https://doi.org/10.1063/1.448799 CrossRefGoogle Scholar
  24. 24.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299.  https://doi.org/10.1063/1.448975 CrossRefGoogle Scholar
  25. 25.
    Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032.  https://doi.org/10.1063/1.474659 CrossRefGoogle Scholar
  26. 26.
    Cossi M, Barone V, Mennucci B, Tomasi J (1998) Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem Phys Lett 286:253–260.  https://doi.org/10.1016/s0009-2614(98)00106-7 CrossRefGoogle Scholar
  27. 27.
    Brahim H, Haddad B, Boukabene M, Brahim S, Ariche B (2017) Theoretical study of geometric structures and electronic absorption spectra of iridium(III) complexes based on 2-phenyl-5-nitropyridyl with different ancillary ligands. Comput Theor Chem 1101:8–19.  https://doi.org/10.1016/j.comptc.2016.12.016
  28. 28.
    Brahim H, Haddad B, Brahim S, Guendouzi A (2017) DFT/TDDFT computational study of the structural, electronic and optical properties of rhodium(III) and iridium(III) complexes based on tris-picolinate bidentate ligands. J Mol Model 23:344.  https://doi.org/10.1007/s00894-017-3517-3
  29. 29.
    Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218.  https://doi.org/10.1021/ja00544a007 CrossRefGoogle Scholar
  30. 30.
    Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78:4066–4073.  https://doi.org/10.1063/1.445134 CrossRefGoogle Scholar
  31. 31.
    Reed AE, Weinhold F (1985) Natural localized molecular orbitals. J Chem Phys 83:1736–1740.  https://doi.org/10.1063/1.449360 CrossRefGoogle Scholar
  32. 32.
    Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746.  https://doi.org/10.1063/1.449486 CrossRefGoogle Scholar
  33. 33.
    Weinhold F, Landis CR (2001) Natural bond orbitals and extensions of localized bonding concepts. Chem Educ Res Pract 2:91–104.  https://doi.org/10.1039/b1rp90011k CrossRefGoogle Scholar
  34. 34.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmaann JA, Morales CM, Weinhold F (2001) NBO. Theoretical Chemistry Institute, University of Wisconsin, MadisonGoogle Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., WallingfordGoogle Scholar
  36. 36.
    Jmol Development Team (2013) Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/
  37. 37.
    Patek M (2013) Jmol NBO Visualization Helper. http://www.marcelpatek.com/nbo/nbo.html. Accessed 2 Jul 2018
  38. 38.
    Deilami AB, Salehi M, Arab A, Amiri A (2018) Synthesis, crystal structure, electrochemical properties and DFT calculations of three new Zn(II), Ni(II) and Co(III) complexes based on 5-bromo-2-((allylimino)methyl)phenol Schiff-based ligand. Inorg Chim Acta 476:93–100 http://www.sciencedirect.com/science/article/pii/S0020169317316134 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Amina Guelai
    • 1
  • Houari Brahim
    • 1
  • Abdelkrim Guendouzi
    • 1
  • Mostefa Boumediene
    • 1
  • Sefia Brahim
    • 1
  1. 1.Department of ChemistryUniversity of Saida—Docteur Moulay TaharSaidaAlgeria

Personalised recommendations