Advertisement

Interactions of cantharidin-like inhibitors with human protein phosphatase-5 in a Mg2+ system: molecular dynamics and quantum calculations

  • Letícia C. Assis
  • Alexandre A. de Castro
  • Ingrid G. Prandi
  • Daiana T. Mancini
  • Juliana O. S. de Giacoppo
  • Ranylson M. L. Savedra
  • Tamiris M. de Assis
  • Juliano B. Carregal
  • Elaine F. F. da Cunha
  • Teodorico Castro Ramalho
Original Paper
  • 49 Downloads
Part of the following topical collections:
  1. XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)

Abstract

The serine/threonine protein phosphatase type 5 (PP5) is a promising target for designing new antitumor drugs. This enzyme is a member of the PPP phosphatases gene family, which catalyzes a dephosphorylation reaction: a regulatory process in the signal transduction pathway that controls various biological processes. The aim of this work is to study and compare the inhibition of PP5 by ten cantharidin-like inhibitors in order to bring about contributions relevant to the better comprehension of their inhibitory activity. In this theoretical investigation, we used molecular dynamics techniques to understand the role of key interactions that occur in the protein active site; QM calculations were employed to study the interaction mode of these inhibitors in the enzyme. In addition, atoms in molecules (AIM) calculations were carried out to characterize the chemical bonds among the atoms involved and investigate the orbital interactions with their respective energy values. The obtained results suggest that the Arg275, Asn303, His304, His352, Arg400, His427, Glu428, Val429, Tyr451, and Phe446 residues favorably contribute to the interactions between inhibitors and PP5. However, the Asp271 and Asp244 amino acid residues do not favor such interactions for some inhibitors. Through the QM calculations, we can suggest that the reactional energy of the coordination mechanism of these inhibitors in the PP5 active site is quite important and is responsible for the inhibitory activity. The AIM technique employed in this work was essential to get a better comprehension of the transition states acquired from the mechanism simulation. This work offers insights of how cantharidin-like inhibitors interact with human PP5, potentially allowing the design of more specific and even less cytotoxic drugs for cancer treatments.

Graphical Abstract

Interactions of cantharidin-like inhibitors with human protein phosphatase-5 in a Mg2+ system

Keywords

Serine/threonine phosphatase 5 Cantharidin-like inhibitors Molecular dynamics QM/MM AIM 

Notes

Acknowledgements

The authors wish to thank the Brazilian financial agencies Coordenação de Aperfeiçoamento Pessoal de Nível Superior/Ministério da Defesa (CAPES/MD), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo ao Ensino e Pesquisa de Minas Gerais (FAPEMIG), and Federal Univesity of Lavras (UFLA) for providing the physical infrastructure and working space. This work was also supported by Excellence project FIM.

Supplementary material

894_2018_3837_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1389 kb)

References

  1. 1.
    Chinkers M (2001) Protein phosphatase 5 in signal transduction. Trends Endocrinol Metab 12:28–32CrossRefGoogle Scholar
  2. 2.
    Golden T, Swingle M, Honkanen RE (2008) The role of serine/threonine protein phosphatase type 5 (PP5) in the regulation of stress-induced signaling networks and cancer. Cancer Metastasis Rev 27:169–178CrossRefGoogle Scholar
  3. 3.
    Chen X, Shumin L, Zhang Y (2013) Identification and biochemical characterization of protein phosphatase 5 from the cantharidin-producing blister beetle Epicauta chinensis. Int J Mol Sci 14:24501–24513CrossRefGoogle Scholar
  4. 4.
    Lajarín-Cuesta R, Arribas RL, De Los Ríos C (2016) Ligands for Ser/Thr phosphoprotein phosphatases: a patent review (2005-2015). Expert Opin Ther Pat 3776:1–19Google Scholar
  5. 5.
    Ribeiro AJM, Alberto ME, Ramos MJ, Fernandes PA, Russo N (2013) The catalytic mechanism of protein phosphatase 5 established by DFT calculations. Chemistry 19:14081–14089CrossRefGoogle Scholar
  6. 6.
    Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484CrossRefGoogle Scholar
  7. 7.
    Swingle MR, Honkanen RE, Ciszak EM (2004) Structural basis for the catalytic activity of human serine/threonine protein phosphatase-5. J Biol Chem 279:33992–33999CrossRefGoogle Scholar
  8. 8.
    Liu JY, Chen XE, Zhang YL (2015) Insights into the key interactions between human protein phosphatase 5 and cantharidin using molecular dynamics and site-directed mutagenesis bioassays. Sci Rep 5:12359CrossRefGoogle Scholar
  9. 9.
    Oberoi J, Dunn DM, Woodford MR, Mariotti L, Schulman J, Bourboulia D, Mollapour M, Vaughan CK (2016) Structural and functional basis of protein phosphatase 5 substrate specificity. Proc Natl Acad Sci U S A 113:9009–9014CrossRefGoogle Scholar
  10. 10.
    Hinds TD, Sánchez ER (2008) Protein phosphatase 5. Int J Biochem Cell Biol 40:2358–2362CrossRefGoogle Scholar
  11. 11.
    Bertini I, Calderone V, Fragai M, Luchinat C, Talluri E (2009) Structural basis of serine/threonine phosphatase inhibition by the archetypal small molecules cantharidin and norcantharidin. J Med Chem 52:4838–4843CrossRefGoogle Scholar
  12. 12.
    Chattopadhyay D, Swingle MR, Salter EA, Wood E, D’Arcy B, Zivanov C, Abney K, Musiyenko A, Rusin SF, Kettenbach A, Yet L, Schroeder CE, Golden JE, Dunham WH, Gingras AC, Banerjee S, Forbes D, Wierzbicki A, Honkanen RE (2016) Crystal structures and mutagenesis of PPP-family ser/thr protein phosphatases elucidate the selectivity of cantharidin and novel norcantharidin-based inhibitors of PP5C. Biochem Pharmacol 109:14–26CrossRefGoogle Scholar
  13. 13.
    Salter EA, Honkanen RE, Wierzbicki A (2015) Modeling the antiferromagnetic MnIIMnII system within the protein phosphatase-5 catalytic site. J Mol Model 21:2556CrossRefGoogle Scholar
  14. 14.
    Martins JPA, Barbosa EG, Pasqualoto KFM, Ferreira MMC (2009) LQTA-QSAR: a new 4D-QSAR methodology. J Chem Inf Model 49:1428–1436CrossRefGoogle Scholar
  15. 15.
    Namba AM, Da Silva VB, Silva CHTP (2008) Dinâmica molecular: Teoria e aplicações em planejamento de fármacos. Eclet Quim 33:13–24CrossRefGoogle Scholar
  16. 16.
    Ramalho TC,Castro AA, Silva DR, Silva MC, França TCC, Bennion BJ, Kuca K (2016) Computational enzymology and organophosphorus degrading enzymes: promising approaches toward remediation technologies of warfare agents and pesticides. Curr Med Chem 23:1041–1061Google Scholar
  17. 17.
    Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48:1198–1229CrossRefGoogle Scholar
  18. 18.
    Ryde U (2016) QM/MM calculations on proteins. Methods Enzymol 577:119–158CrossRefGoogle Scholar
  19. 19.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  20. 20.
    Accelrys Software (2012) Discovery studio modeling environment. http://accelrys.com/
  21. 21.
    Páll S, Abraham MJ, Kutzner C, Hess B, Lindahl E (2015) Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In: Markidis S, Laure E (Eds.) Solving software challenges exascale. Int conf exascale appl software, EASC 2014 Stock Sweden April 2–3, revised selected papers. Springer, Cham pp 3–27Google Scholar
  22. 22.
    Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krüger P, Van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607CrossRefGoogle Scholar
  23. 23.
    Wong KY, Mercader AG, Saavedra LM, Honarparvar B, Romanelli GP, Duchowicz PR (2014) QSAR analysis on tacrine-related acetylcholinesterase inhibitors. J Biomed Sci 21:84CrossRefGoogle Scholar
  24. 24.
    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190CrossRefGoogle Scholar
  25. 25.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log( N ) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  26. 26.
    Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  27. 27.
    OriginLab Corporation (2018) Origin 8. OriginLab Corporation, NorthamptonGoogle Scholar
  28. 28.
    Jorgensen WL (2013) Foundations of biomolecular modeling. Cell 155:1199–1202CrossRefGoogle Scholar
  29. 29.
    Frisch WCMJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ort JV (2009) Gaussian Inc., WallingfordGoogle Scholar
  30. 30.
    Besler BH, Merz KM, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11:431–439CrossRefGoogle Scholar
  31. 31.
    Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145CrossRefGoogle Scholar
  32. 32.
    Gustin DJ, Mattei P, Kast P, Wiest O, Lee L, Cleland WW, Hilvert D (1999) Heavy atom isotope effects reveal a highly polarized transition state for chorismate mutase. J Am Chem Soc 121:1756–1757CrossRefGoogle Scholar
  33. 33.
    Giacoppo JOS, França TCC, Kuča K, Da Cunha EFF, Abagyan R, Mancini DT, Ramalho TC (2014) Molecular modeling and in vitro reactivation study between the oxime BI-6 and acetylcholinesterase inhibited by different nerve agents. J Biomol Struct Dyn 33:2048–58Google Scholar
  34. 34.
    Kumar PSV, Raghavendra V, Subramanian V (2016) Bader’s theory of atoms in molecules (AIM) and its applications to chemical bonding. J Chem Sci 128:1527–1536CrossRefGoogle Scholar
  35. 35.
    Silva TC, de Almeida KJ, Pires MS, Castro AA, Gonçalves MA, da Cunha EFF, Ramalho TC (2017) Theoretical structural and electronic analyses with emphasis on the reactivity of iron oxide prototypes in methane C--H bond activation. React Kinet Mech Catal 120:195–208CrossRefGoogle Scholar
  36. 36.
    Goncalves MA, Lizandro SS, Diego MP, Peixoto FC, Cunha EFF, Ramalho TC (2017) Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: application to thermal and solvent effects of MRI probes. Theor Chem Accounts 136:15CrossRefGoogle Scholar
  37. 37.
    Castro AA, Melissa CS, Silva T, Mancini D, Pereira ER, da Cunha EFF, Ramalho TC (2016) Molecular docking metal substitution and hydrolysis reaction of chiral substrates of phosphotriesterase. Comb Chem High Throughput Screen 19:334–344CrossRefGoogle Scholar
  38. 38.
    Castro AA, Prandi IG, Kuca K, Ramalho TC (2017) Organophosphorus degrading enzymes: molecular basis and perspectives for enzymatic bioremediation of agrochemicals. Cienc Agrotecnol 41:471–482CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Letícia C. Assis
    • 1
  • Alexandre A. de Castro
    • 1
  • Ingrid G. Prandi
    • 1
  • Daiana T. Mancini
    • 1
  • Juliana O. S. de Giacoppo
    • 1
  • Ranylson M. L. Savedra
    • 2
  • Tamiris M. de Assis
    • 1
  • Juliano B. Carregal
    • 3
  • Elaine F. F. da Cunha
    • 1
  • Teodorico Castro Ramalho
    • 1
    • 4
  1. 1.Laboratory of Computational Chemistry, Department of ChemistryFederal University of Lavras (UFLA)LavrasBrazil
  2. 2.Laboratory of Molecular Simulation of Material, Department of PhysicsFederal University of Ouro PretoOuro PretoBrazil
  3. 3.Laboratory of Molecular Modeling, Department of ChemistryFederal University of São João del Rei (UFSJ)DivinópolisBrazil
  4. 4.Center for Basic and Applied Research, Faculty of Informatics and ManagementUniversity of Hradec KraloveHradec KraloveCzech Republic

Personalised recommendations