Advertisement

Investigation of net unidirectional ring shuttling in a chemically fueled [2]catenane

  • Gloria Bazargan
  • Karl Sohlberg
Original Paper
  • 50 Downloads

Abstract

Switchable rotaxanes and catenanes are environmentally responsive mechanically interlocked molecular architectures (MIMAs). Because of their ability to exhibit reversible and controllable motion in response to environmental stimuli, switchable rotaxanes and catenanes show promise for the advancement of nanoscale devices. Herein we present a study of the first ‘autonomous’ catenane-based motor (Wilson et al. in Nature 534(7606):235–240, 2016) through a domestically developed simulation tool designed to capture the basic physics/chemistry of the ring shuttling process. The results of the simulation are consistent with the experimentally inferred unidirectional motion in the catenane motor. The factors that affect ring shuttling are explored, and the features of the system that could potentially be modified to influence the rate and directional preference of ring shuttling are reported.

Keywords

Catenane Molecular machine Mechanically interlocked molecules Theory Simulation Modeling 

Supplementary material

894_2018_3830_MOESM1_ESM.docx (84 kb)
ESM 1 (DOCX 83 kb)

References

  1. 1.
    Bazargan G, Sohlberg K (2018) Advances in modelling switchable mechanically interlocked molecular architectures. Int Rev Phys Chem 37(1):1–82CrossRefGoogle Scholar
  2. 2.
    Frankfort L, Zheng X, Sohlberg K (2004) Mechanical molecular nanodevices. Encyclopedia of Nanoscience and Nanotechnology (5):73-89Google Scholar
  3. 3.
    Foster ME, Sohlberg K (2011) Computational investigation of the role of counterions and reorganization energy in a switchable bistable [2]rotaxane. J Phys Chem A 115(26):7773–7777CrossRefGoogle Scholar
  4. 4.
    Abendroth JM, Bushuyev OS, Weiss PS, Barrett CJ (2015) Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 9(8):7746–7768CrossRefGoogle Scholar
  5. 5.
    Wilson MR, Solà J, Carlone A, Goldup SM, Lebrasseur N, Leigh DA (2016) An autonomous chemically fuelled small-molecule motor. Nature 534(7606):235–240CrossRefGoogle Scholar
  6. 6.
    Asakawa M, Ashton PR, Balzani V, Credi A, Hamers C, Mattersteig G, Montalti M, Shipway AN, Spencer N, Stoddart JF (1998) A chemically and electrochemically switchable [2] catenane incorporating a tetrathiafulvalene unit. Angew Chem Int Ed 37(3):333–337CrossRefGoogle Scholar
  7. 7.
    Zhang H, Liu Q, Li J, Qu D-H (2013) A novel star-shaped zinc porphyrin cored [5]Rotaxane. Org Lett 15(2):338–341CrossRefGoogle Scholar
  8. 8.
    Zhou W, Guo Y-J, Qu D-H (2013) Photodriven clamlike motion in a [3]rotaxane with two [2]rotaxane arms bridged by an overcrowded alkene switch. J Organomet Chem 78(2):590–596CrossRefGoogle Scholar
  9. 9.
    Coutrot F, Romuald C, Busseron E (2008) A new pH-switchable dimannosyl [c2] daisy chain molecular machine. Org Lett 10(17):3741–3744CrossRefGoogle Scholar
  10. 10.
    Sohlberg K, Bazargan G, Angelo JP, Lee C (2017) Application of semiempirical electronic structure theory to compute the force generated by a single surface-mounted switchable rotaxane. J Mol Model 23(1):29CrossRefGoogle Scholar
  11. 11.
    Sohlberg K, Lee K-H (2006) An introduction to modeling interlocked molecule systems and application to a "molecular elevator". J Comput Theor Nanosci 3(6):865–873CrossRefGoogle Scholar
  12. 12.
    Advanced Chemistry Development, Inc. (2015) ChemSketch. Advanced Chemistry Development, Inc., Toronto. www.acdlabs.com
  13. 13.
    Hypercube Inc. (2018) HyperChem molecular modeling program. Hypercube Inc., Gainseville. www.hyper.com
  14. 14.
    Dewar MJ, Zoebisch EG, Healy EF, Stewart JJ (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107(13):3902–3909CrossRefGoogle Scholar
  15. 15.
    Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2(5):799–805CrossRefGoogle Scholar
  16. 16.
    Stewart JJP (2016) MOPAC2016. Stewart Computational Chemistry, Colorado Springs. http://OpenMOPAC.net
  17. 17.
    Jmol: An open-source Java viewer for chemical structures in 3D http://www.jmol.org
  18. 18.
    Stewart JJ (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13(12):1173–1213CrossRefGoogle Scholar
  19. 19.
    Řezáč J, Hobza P (2011) Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J Chem Theory Comput 8(1):141–151CrossRefGoogle Scholar
  20. 20.
    Mendoza SM, Whelan CM, Jalkanen J-P, Zerbetto F, Gatti FG, Kay ER, Leigh DA, Lubomska M, Rudolf P (2005) Experimental and theoretical study of the adsorption of fumaramide [2] rotaxane on au (111) and ag (111) surfaces. J Chem Phys 123(24):244708CrossRefGoogle Scholar
  21. 21.
    Day R, Bennion BJ, Ham S, Daggett V (2002) Increasing temperature accelerates protein unfolding without changing the pathway of unfolding. J Mol Biol 322(1):189–203CrossRefGoogle Scholar
  22. 22.
    Wang T, Wade RC (2007) On the use of elevated temperature in simulations to study protein unfolding mechanisms. J Chem Theory Comput 3(4):1476–1483CrossRefGoogle Scholar
  23. 23.
    Dalby A, Shamsir MS (2015) Molecular dynamics simulations of the temperature induced unfolding of crambin follow the Arrhenius equation. F1000Res 4:589Google Scholar
  24. 24.
    Yi R, Basch H, Hoz S (2002) The periodic table and the intrinsic barrier in SN2 reactions. J Org Chem 67(17):5891–5895CrossRefGoogle Scholar
  25. 25.
    Glukhovtsev MN, Pross A, Schlegel HB, Bach RD, Radom L (1996) Gas-phase identity SN2 reactions of halide anions and methyl halides with retention of configuration. J Am Chem Soc 118(45):11258–11264CrossRefGoogle Scholar
  26. 26.
    Liu S, Hu H, Pedersen LG (2010) Steric, quantum, and electrostatic effects on SN2 reaction barriers in gas phase. J Phys Chem A 114(18):5913–5918CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryDrexel UniversityPhiladelphiaUSA

Personalised recommendations