Theoretical rate constant of methane oxidation from the conventional transition-state theory

  • Claudia Aranda
  • Arlette Richaud
  • Francisco Méndez
  • Armando Domínguez
Original Paper
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday


The potential energy surface for the first step of the methane oxidation CH4 + O2➔CH3 + HO2 was studied using the London-Eyring-Polanyi-Sato equation (LEPS) and the conventional transition-state theory (CTST). The calculated activation energy and rate constant values were in good agreement with the experimental and theoretical values reported in the literature using the shock tube technique and coupled cluster method respectively. The rate equation from CTST, although simple, provides good results to study the H-shift between methane and the oxygen molecules.


Methane Oxidation Potential energy surface Reaction path 



The authors would like to thank CONACYT-México for scholarship number 207214 and 18053 and 163234 CONACYT-México project grant.

Supplementary material

894_2018_3829_MOESM1_ESM.docx (149 kb)
ESM 1 (DOCX 149 kb)


  1. 1.
    Aul CJ, Metcalfe WK, Burke SM, Curran HJ, Petersen EL (2013) Ignition and kinetic modeling of methane and ethane fuel blends with oxygen: a design of experiments approach. Combust Flame 160:1153–1167. CrossRefGoogle Scholar
  2. 2.
    El Merhubi H, Kéromnès A, Catalano G, Lefort B, Le Moyne L (2016) A high pressure experimental and numerical study of methane ignition. Fuel 177:164–172. CrossRefGoogle Scholar
  3. 3.
    Dale A, Lythall C, Aucott J, Sayer C (2002) High precision calorimetry to determine the enthalpy of combustion of methane. Thermochim Acta 382(1-2):47–54. CrossRefGoogle Scholar
  4. 4.
    Chenoweth K, Van Duin ACT, Goddard III WA (2008) ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 112:1040–1053. CrossRefPubMedGoogle Scholar
  5. 5.
    Page AJ, Moghtaderi B (2009) Molecular dynamics simulation of the low-temperature partial oxidation of CH4. J Phys Chem A 113(8):1539–1547. CrossRefPubMedGoogle Scholar
  6. 6.
    Srinivasan NK, Michael JV, Harding LB, Klippenstein SJ (2007) Experimental and theoretical rate constants for CH4+O2→CH3+HO2. Combust Flame 149:104–111. CrossRefGoogle Scholar
  7. 7.
    Rasmussen CL, Jakobsen JG, Glarborg P (2008) Experimental measurements and kinetic modeling of CH4/O2 and CH4/C2H6/O2conversion at high pressure. In J Chem Kinet 40(12):778–807. CrossRefGoogle Scholar
  8. 8.
    Mai TV-T, Duong MV, Le XT, Huynh LK, Ratkiewicz A (2014) Direct ab initio dynamics calculations of thermal rate constantsfor the CH4 + O2= CH3 + HO2 reaction. Struct Chem 25:1495–1503. CrossRefGoogle Scholar
  9. 9.
    Giménez-López J, Millera A, Bilbao R, Alzueta MU (2015) Experimental and kinetic modeling study of the oxy-fuel oxidation of natural gas, CH4 and C2H6. Fuel 160:404–412. CrossRefGoogle Scholar
  10. 10.
    Hashemi H, Christensen JM, Gersen S, Levinsky H, Klippenstein SJ, Glarborg P (2016) High-pressure oxidation of methane. Combust Flame 172:349–364. CrossRefGoogle Scholar
  11. 11.
    Ryu S-O, Shin KS, Hwang SM (2017) Determination of the rate coefficients of the CH4 + O2➔HO2 + CH3 and HCO + O2➔HO2 + CO reactions at high temperatures. Bull Kor Chem Soc 38:228–236. CrossRefGoogle Scholar
  12. 12.
    Skinner GB, Lifshitz A, Scheller K, Burcat A (1972) Kinetics of methane oxidation. J Chem Phys 56(8):3853–3861. CrossRefGoogle Scholar
  13. 13.
    Shaw R (1978) Semi-empirical extrapolation and estimation of rate constants for abstraction of H from methane by H, O, HO and O2. J Phys Chem Ref Data 7(3):1179–1190. CrossRefGoogle Scholar
  14. 14.
    Tsang W, Hampson RF (1986) Chemical kinetic data vase for combustion chemistry. Part I. Methane and related compounds. J Phys Chem Ref Data 15(3):1087–1279. CrossRefGoogle Scholar
  15. 15.
    Baulch DL, Cobos CJ, Cox RA, Esser C, Frank P, Just T, Kerr JA, Pilling MJ, Troe J, Walker RW, Warnatz J (1992) Evaluated kinetic data for combustion modeling. J Phys Chem Ref Data 21(3):411–734. CrossRefGoogle Scholar
  16. 16.
    Baulch DL, Bowman CT, Cobos CJ, Cox RA, Just T, Kerr JA, Pilling MJ, Stocker D, Troe J, Tsang W, Walker RW, Warnatz J (2005) Evaluated kinetic data for combustion modeling: supplement II. J Phys Chem Ref Data 34:757–1397. CrossRefGoogle Scholar
  17. 17.
    Laidler KJ (1987) Chemical kinetics, 3rd edn. Harper Collins, New YorkGoogle Scholar
  18. 18.
    Galindo Hernández F, Méndez Ruiz F (2003) Determinación de la energía de activación para la reacción de H+H2 mediante el cálculo de superficies de energía potencial. Rev Mex Fis 49(3):264–270Google Scholar
  19. 19.
    Moss SJ, Coady CJ (1983) Potential-energy surfaces and transition-state theory. J Chem Educ 60(6):455–461. CrossRefGoogle Scholar
  20. 20.
    Sato S (1955) On a new method of drawing the potential energy surface. J Chem Phys 23:592–593. CrossRefGoogle Scholar
  21. 21.
    Wang X, Ben-Nun M, Levine RD (1995) Peripheral dynamics of the Cl + CH4 → HCl + CH3 reaction. Chem Phys 197:1–17. CrossRefGoogle Scholar
  22. 22.
    Liu Y, Liu Z, Lv G, Jiang L, Sun J (2006) Product polarization distribution: Stereodynamics of the reactions Cl+CH4→HCl+CH3 and Cl+CD4→DCl+CD3. Chem Phys Lett 423:157–164. CrossRefGoogle Scholar
  23. 23.
    Lemon WJ, Hase WL (1987) A potential energy function for the hydroperoxyl radical. J Phys Chem 91(6):1596–1602. CrossRefGoogle Scholar
  24. 24.
    Zhu R, Hsu C-C, Lin MC (2001) Ab initio study of the CH3 + O2 reaction: kinetics, mechanism and product branching probabilities. J Chem Phys 115(1):195–203. CrossRefGoogle Scholar
  25. 25.
    Ase P, Bock W, Snelson A (1986) Alkylperoxy and alkyl radicals. 1. Infrared spectra of CH3O2 and CH3O4CH3 and the ultraviolet photolysis of CH3O2 in argon+oxygen matrices. J Phys Chem 90(10):2099–2109. CrossRefGoogle Scholar
  26. 26.
    Knox JH (1971) Molecular partition functions. Wiley-Interscience, LondonGoogle Scholar
  27. 27.
    Kalman D (1982) Dot products, spherical coordinates, and 109°. Int J Math Educ Sci Technol 13(4):493–494. CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 revision B.01. Gaussian Inc, WallingfordGoogle Scholar
  29. 29.
    MATLAB version 7.0.0. R14 (2004) The MathWorks Inc., NatickGoogle Scholar
  30. 30.
    Ree J, Kim YH, Shin HK (2007) Classical trajectory study of the formation of XeH and XeCl+ in the Xe++HCl collision. J Chem Phys 127(5):054304-1–054304-13. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Claudia Aranda
    • 1
  • Arlette Richaud
    • 1
  • Francisco Méndez
    • 1
  • Armando Domínguez
    • 1
  1. 1.Departamento de Química, División de Ciencias Básicas e IngenieríaUniversidad Autónoma Metropolitana-IztapalapaMéxico, D.F.México

Personalised recommendations