Advertisement

Hyperconjugation enhances electrophilic addition to monocyclic monoterpenes: a Fukui function perspective

  • Jorge A. Amador-Balderas
  • Ramsés E. Ramírez
  • Francisco Méndez
  • Francisco J. Meléndez
  • Arlette Richaud
Original Paper
  • 76 Downloads
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Abstract

The local and condensed Fukui functions as well as the principle of hard and soft acids and bases were used to study the addition of free radicals to the exocyclic and endocyclic double bonds of seven monocyclic monoterpenes of formula C10H16. The results obtained showed that, in general, the most reactive double bond was the one with the most substituents on the double-bonded carbon atoms, and that the reaction of a double bond with an electrophile is a soft–soft interaction. The effects of substituents on the double-bonded carbon atoms and the stabilization of the monoterpenes were interpreted by invoking hyperconjugated structures, which led us to propose a simple rule: the larger the value of the Fukui function for the double bond, the greater the hyperconjugative stabilization and the susceptibility of the double bond to electrophilic attack. In general, our results are in good accordance with relevant experimental and theoretical results published in the literature.

Graphical abstract

The specific electrophilic addition to monocyclic monoterpenes.

Keywords

Monoterpene Fukui function Inductive character Endocyclic and exocyclic double bonds Methyl and isopropyl groups Hyperconjugative structures Hyperconjugative stabilization 

Notes

Acknowledgments

This work was partially supported by the project VIEP-BUAP RAGR-NAT17-I, Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla, Cuerpo Académico BUAP-CA-263 “Investigación experimental y teórica de nuevos materiales y educación en ciencias,” as well as the Laboratorio Nacional de Supercómputo del Sureste de México (LNS).

Supplementary material

894_2018_3825_MOESM1_ESM.docx (757 kb)
ESM 1 (DOCX 756 kb)

References

  1. 1.
    Slade JH, de Perre C, Lee L, Shepson PB (2017) Nitrate radical oxidation of γ-terpinene: hydroxy nitrate, total organic nitrate, and secondary organic aerosol yields. Atmos Chem Phys 17:8635–8650.  https://doi.org/10.5194/acp-17-8635-2017 CrossRefGoogle Scholar
  2. 2.
    Harrison JC, Wells JR (1994) Investigation of terpinolene + ozone or terpinolene + nitrate radical reaction products using denuder/filter apparatus. Atmos Environ 80:524–532CrossRefGoogle Scholar
  3. 3.
    Keywood MD, Varutbangkul V, Bahreini R, Flagan RC, Seinfeld JH (2004) Secondary organic aerosol formation from the ozonolysis of cycloalkenes and related compounds. Environ Sci Technol 38:4157–4164Google Scholar
  4. 4.
    Jiang L, Wang W, Xu Y-S (2009) Theoretical investigation of the NO3 radical addition to double bonds of limonene. Int J Mol Sci 10:3743–3754Google Scholar
  5. 5.
    Jiang L, Lan R, Xu Y-S, Zhang W-J, Yang W (2013) Reaction of stabilized Criegee intermediates from ozonolysis of limonene with water: ab initio and DFT study. Int J Mol Sci 14:5784–5805Google Scholar
  6. 6.
    Fry JL, Kiendler-Scharr A, Rollins AW, Brauers T, Brown SS, Dorn H-P, Dubé WP, Fuchs H, Mensah A, Rohrer F, Tillmann R, Wahner A, Wooldridge PJ, Cohen RC (2011) SOA from limonene: role of NO3 in its generation and degradation. Atmos Chem Phys 11:3879–3894Google Scholar
  7. 7.
    Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover Publications, New YorkGoogle Scholar
  8. 8.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., WallingfordGoogle Scholar
  9. 9.
    Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050Google Scholar
  10. 10.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  11. 11.
    Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711.  https://doi.org/10.1021/ja00279a008 CrossRefGoogle Scholar
  12. 12.
    Kim H (2016) A density functional theory study on the reaction mechanism of terpinolene with O3. Bull Kor Chem Soc 37:121–122Google Scholar
  13. 13.
    Shorees B, Atkinson R, Arey J (1991) Kinetics of the gas-phase reactions of β/3-phellandrene with OH and NO3 radicals and O3 at 297+-2K. Int J Chem Kinet 23:897–906Google Scholar
  14. 14.
    Ham JE, Harrison JC, Jackson SR, Wells JR (2016) Limonene ozonolysis in the presence of nitric oxide: gas-phase reaction products and yields. Atmos Environ 132:300–308CrossRefGoogle Scholar
  15. 15.
    Zhang J, Huff-Hartz KE, Pandis SN, Donahue NM (2006) Secondary organic aerosol formation from limonene ozonolysis: homogenous and heterogenous influences as a function of NOx. J Phys Chem A 110:11053–11063Google Scholar
  16. 16.
    Fry JL, Kiendler-Scharr A, Rollins AW, Brauers T, Brown SS, Dorn HP, Dubé WP, Fuchs H, Mensah A, Rohrer F, Tillmann R, Wahner A, Wooldridge PJ, Cohen RC (2011) SOA from limonene: role of NO3 in its generation and degradation. Atmos Chem Phys 11:3879–3894CrossRefGoogle Scholar
  17. 17.
    Ham JE, Jackson SR, Harrison JC, Wells JR (2015) Gas-phase reaction products and yields of terpinolene with ozone and nitric oxide using a new derivatization agent. Atmos Environ 122:513–520CrossRefGoogle Scholar
  18. 18.
    Mackenzie-Rae F, Karton AA, Saunders SM (2006) Computational investigation into the gas-phase ozonolysis of the conjugated monoterpene α-phellandrene. Phys Chem Chem Phys 18:27991–28002Google Scholar
  19. 19.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  20. 20.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516.  https://doi.org/10.1021/ja00364a005 CrossRefGoogle Scholar
  21. 21.
    Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856.  https://doi.org/10.1021/ja00005a073 CrossRefGoogle Scholar
  22. 22.
    Gázquez JL, Méndez F (1994) The hard and soft acids and bases principle: an atoms in molecules viewpoint. J Phys Chem 98:4591–4593CrossRefGoogle Scholar
  23. 23.
    Méndez F, Gázquez JL (1994) Chemical reactivity of enolate ions: the local hard and soft acids and bases principle viewpoint. J Am Chem Soc 116:9298–9301Google Scholar
  24. 24.
    López P, Méndez F (2004) Fukui function as a descriptor of the imidazolium protonated cation resonance hybrid structure. Org Lett 6:1781–1783CrossRefGoogle Scholar
  25. 25.
    Mulliken RS (1939) Intensities of electronic transitions in molecular spectra. IV. Cyclic dienes and hyperconjugation. J Chem Phys 7:339–352Google Scholar
  26. 26.
    Klopman G (1974) Chemical reactivity and reaction paths. Wiley, New YorkGoogle Scholar
  27. 27.
    Mullins JJ (2012) Hyperconjugation: a more coherent approach. J Chem Educ 89:834–836CrossRefGoogle Scholar
  28. 28.
    Baker JW, Nathan WS (1935) Mechanism of aromatic side-chain reactions with special reference to the polar effect of substituents. V. The polar effect of alkyl groups. J Chem Soc 1844–1847Google Scholar
  29. 29.
    Alabugin IV, Gilmore MK, Peterson WP (2011) Hyperconjugation. WIREs Comput Mol Sci 1:109–141.  https://doi.org/10.1002/wcms.6 CrossRefGoogle Scholar
  30. 30.
    Feixas F, Matito E, Poater J, Solá M (2011) Understanding conjugation and hyperconjugation from electronic delocalization measures. J Phys Chem A 115:13104–13113.  https://doi.org/10.1021/jp205152n
  31. 31.
    Jarowski PD, Wodrich MD, Wanner CS, Schleyer PvR, Houk KN (2004) How large is the conjugative stabilization of diynes? J Am Chem Soc 126:15036–15037Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jorge A. Amador-Balderas
    • 1
  • Ramsés E. Ramírez
    • 1
  • Francisco Méndez
    • 2
  • Francisco J. Meléndez
    • 3
  • Arlette Richaud
    • 2
  1. 1.Departamento de FisicomatemáticasBenemérita Universidad Autónoma de Puebla-Facultad de Ciencias QuímicasPueblaMéxico
  2. 2.Departamento de Química, División de Ciencias Básicas e IngenieríaUniversidad Autónoma Metropolitana-IztapalapaMéxicoMéxico
  3. 3.Departamento de FisicoquímicaBenemérita Universidad Autónoma de Puebla-Facultad de Ciencias QuímicasPueblaMéxico

Personalised recommendations