When finite becomes infinite: convergence properties of vibrational spectra of oligomer chains

  • Chien-Pin Chou
  • Henryk WitekEmail author
  • Stephan IrleEmail author
Original Paper
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday


We present a computational study of convergence properties of vibrational IR and Raman spectra for a series of increasingly long units of polyethylene, cis- and trans-polyacetylenes, and polyynes. Convergent behavior to the spectra of infinitely long polymers was observed in all cases when chains reached lengths of approximately 60 carbon atoms, both with respect to the positions of the bands and to their intensities. The vibrational spectra of longer chains are practically indistinguishable. The convergence rate depends on the degree of the π conjugation in a studied system: Vibrational spectra for oligoethylenes converge noticeably faster than the spectra for the conjugated systems. The slowest convergence is observed for skeletal motions of the oligomer chains, which may require more than a hundred carbon atoms in the chain to show deviations smaller than 1 cm−1 to the corresponding solid-state calculations. The results suggest that the boundary between the properties of finite and infinite molecular systems fades away for a surprisingly small number of atoms.


Simulations of IR and Raman spectra of polymers Convergence in size evolution SCC-DFTB 


Polymers and molecular wires, molecular sheets, and covalent crystals consist of molecular-sized monomer units with regular bonding patterns in one, two, and three dimensions, respectively. Carbon can form all three types of these extended structures: carbon chains and nanotubes (1D), graphene flakes (2D), and nanodiamonds (3D). Their electronic and vibrational spectra converge toward bulk limits that are independent of the system size. It is therefore natural and interesting to ask a fundamental question: What is the smallest possible size—either expressed in units of length or in the number of atoms—of a finite extended structure, for which the effects of its finiteness can no longer be observed? An answer to this question is generally difficult to obtain. A few systematic theoretical attempts to answer this question have employed ab initio and density functional theory (DFT) for the simulation of vibrational spectra of series of homologues compounds with increasing system size. An early work by Raghavachari and coworkers [1] focused on the vibrational frequencies of n-alkanes. Karpfen and coworkers [2] reported the size evolution of vibrational spectra of polyenes, and Kertesz and coworkers [3, 4, 5] applied a similar approach to polyynes and linear carbon chains. Naturally, the maximum molecular size in these studies correlates with available computer power at the time of the study: While C5H12 was the largest compound treated in the 1986 Hartree-Fock study [1], by 2007 DFT frequency calculations of C72H2 had become possible. Nevertheless, prediction of vibrational spectra based on ab initio and DFT approaches remains difficult for systems with more than a hundred atoms due to the costly and tedious solution to the coupled perturbed Kohn-Sham (CPKS) or Hartree-Fock (CPHF) equations [6] that elude efficient parallelization. Only recently [7], the auxiliary density perturbation theory [8] developed by Koster and collaborators has been able to constitute a viable way of replacing the CPHF equations and by massive parallelization [7] has enabled spectra calculations for larger nanostructures.

In a recent article [9], we applied the computationally more economical self-consistent-charge density-functional tight-binding (SCC-DFTB) [10] quantum chemical method to study the size evolution of Raman spectra of hydrogen-terminated nanodiamond models starting from the smallest conceivable model of adamantane (C10H16) up to molecules as large as 3 nm, containing approximately 1000 carbon atoms. Although the simulated Raman spectra displayed convergent characteristics with increasing system size, the convergence toward the single crystal spectrum was rather slow. Thus, in the present study, we simulate the vibrational spectra of carbon aggregates with reduced dimensionality, i.e., one-dimensional finite chains consisting of carbon atoms. In analogy with the simulations of the Raman spectra of nanodiamonds, we terminate the chains using hydrogen atoms. In order to make the study as general as possible, we simulate both infrared (IR) and Raman spectra for three families of chains consisting of the sp, sp2, and sp3 carbon atoms. The dimensionality reduction allows us to study the convergence rate up to almost a perfect agreement with the solid-state calculations for the corresponding infinite chains: polyyne, cis- and trans-polyacetylene, and polyethylene. The polyethylene results are used for assessing the convergence rate of the vibrational spectra of crystalline nanodiamond models.

Simulations of the first-order Raman and IR vibrational spectra of extended systems are usually done in the framework of solid state physics. The solid-state techniques transform the infinitely-dimensional mass-weighed Hessian matrix into a block-diagonal form. The resulting blocks are finite with the size 3N × 3N, where N denotes the number of atoms inside the unit cell. Each finite block corresponds to a certain irreducible representation of the discrete translational symmetry group labeled by a triple of indices: (kx, ky, kz). Diagonalization of each block yields a set of phonon frequencies at (kx, ky, kz). The collection of the phonon frequencies for (kx, ky, kz) probing uniformly the first Brillouin zone is usually referred to as the phonon dispersion relations. Since the magnitude of the incident light wave vector is minuscule in comparison to typical phonon wave vectors, one-phonon IR and Raman techniques are capable of probing only the proximate vicinity of the zone center. Thus, the positions of the bands in IR and Raman spectra correspond to the phonon frequencies at the Γ point, (kx, ky, kz) = (0, 0, 0). While the positions of the bands are quite readily determined in the solid-state framework, computing the band intensities constitutes a much more difficult problem. The intensities are directly related to the changes of the electrical dipole moment and polarizability during the vibrations—defined as appropriate derivatives of the total energy with respect to the components of external electric field—which leads to serious conceptual problems in the solid-state framework. Therefore, the intensities are usually determined either using quite advanced techniques or by semiempirical procedures based on the concept of effective bond polarizabilities.

A natural alternative available for determination of the first-order Raman and infrared (IR) vibrational spectra of extended systems are the techniques of quantum chemistry. In this framework, sometimes referred to as the oligomer approach, one usually starts with a small molecular model of a given extended system and elongates/enlarges it until the convergence of a simulated property is observed. The vibrational spectra are obtained directly from the molecular vibrational frequencies and the associated IR intensities and Raman activities. In contrast to the solid-state framework, the derivatives with respect to the components of external electric field are readily available, greatly simplifying the process of simulating the spectra. On the other hand, the terminal atoms or groups used to saturate the extended system surface may introduce spurious bands in the simulated spectra that fade away only in the limit of large N making the calculations computationally expensive.

Although both the procedures described above are quite standard and usually lead to quite accurate IR and Raman spectra, it is appropriate to briefly signalize here their possible shortcomings and limitations. First of all, the solid-state techniques assume that the studied structure is infinite and perfectly periodic. Both of these assumptions are not correct, at least not in the exact sense. Another issue concerns disorder in the crystal structure, which can be mild (structural defects) or strong (amorphous solids). Modeling these types of disordered phases in the solid-state framework usually requires large supercells allowing for spatial separation of defects or achieving quasi-random distribution of atoms that mimics an amorphous solid. It is unknown how big the supercell should be to allow effective decoupling of neighboring defects. This issue can be quite important in practice. Imagine, for example, a simulation of defect dynamics in a crystal. In the supercell approach, one in fact studies dynamics of a coupled network of defects, which—if not completely decoupled—may behave very differently. Another important situation to be mentioned in this context is studying a chemical reaction on the crystal surface. In the supercell approach, one is studying in fact not one but infinitely many reactions spatially separated by some distance d. One usually wants to keep d small to reduce the computational cost. On the other hand, it is not immediately clear how large value of d should be that the reactions do not influence each other; too small a value of d may distort the reaction energetics to a considerable degree. Note that all these problems are completely alleviated in the quantum chemical approach using a finite molecular model, which seems to be a natural choice for studying defective or amorphous systems. Clearly, the quantum chemical techniques also have their own limitations. Some of them—relatively slow convergence, the presence of the finite size effects, and the closely related spurious signals from the terminal atoms and groups—have already been signalized. Another obstacle can be the quite substantial computational cost associated with large molecular models.

The efficiency of solid-state techniques based on the concept of discrete translational symmetry suggests that the departure from the idealized infinite model in real crystals does not have serious consequences. It is, therefore, natural and interesting to ask a fundamental question what is the smallest possible size—either expressed in units of length or in the number of atoms—of a finite real crystal, for which the effects of its finiteness cannot be observed. The same question can be expressed somewhat differently by asking, what is the smallest possible size of the finite model in the quantum chemical approach that effectively gives the same results like the solid-state framework. In the present work, we shed some light on this problem by modeling IR and Raman spectra of series of finite polyynes, cis- and trans-polyacetylenes, and polyethylenes and studying the convergence of the computed frequency and intensity patterns with growing N. These systems have been studied quite extensively in the solid-state framework, while the finite quantum chemical investigations were limited to rather small molecular models owing to prohibitive computational costs [11]. The results of our simulations demonstrate that “infinity” may start in the molecular world at "quite finite scales". We believe that our results and discussion will prove helpful for researchers aiming at studying extended systems, for which either the finite size, lack of translational periodicity, and/or the presence of defects play an important role.

Computational details

The simulations presented here have been performed using the self-consistent-charge density-functional tight-binding (SCC-DFTB) method [10]. This technique, which can be treated as a careful approximation to density functional theory (DFT), is a modern semiempirical method known to reproduce well molecular geometries, energies, and vibrational frequencies of medium and large molecular systems [12, 13, 14, 15, 16]. Recent reoptimization of the repulsive potentials allowed us to accurately compute the vibrational frequencies with errors comparable to those from DFT [17]. The reoptimized set of the C–C and C–H repulsive SCC-DFTB potentials is used in this study. Efficient analytical Hessian code [15] allowed for modeling IR [18] and Raman [19] spectra of large molecules. Numerous tests [9, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27], performed for fullerenes, nanotubes, and other carbon nanostructures showed that SCC-DFTB is a viable method of computing the harmonic vibrational frequencies and eigenvectors of organic molecules and carbon clusters.

Hydrogen terminated, finite hydrocarbon chains containing up to a few hundred carbon atoms have been used in this study. The largest considered models correspond to 150 unit cells for polyynes, 75 unit cells for polyacetylene, and 100 unit cells for polyethylene. While it was technically possible to study much larger systems (of approximately 1000 carbon atoms), it has been found that the here employed models are sufficiently large to demonstrate the convergence of simulated vibrational spectra. For each of the finite models, we performed full geometry optimization, followed by the determination of harmonic vibrational frequencies, and computation of IR intensities and Raman activities using double-harmonic approximation. In the optimization, the force convergence criterion has been set to 10−6 a.u. and the charge convergence criterion, to 10−12 a.u. The spectra have been simulated assuming a Gaussian spectral envelope with a half-width of 5 cm−1. The method of transforming Raman activities to Raman intensities was presented elsewhere [19].

The convergence of the positions for the IR and Raman bands was evaluated with respect to the corresponding infinite limits obtained from solid state SCC-DFTB calculations. The phonon dispersion curves were computed using the DFTB+ code [28] and the standard super-cell approach. It has been found that for the evaluation of the Hessian matrix, it is sufficient to take two translational replicas of the unit cell in each direction. Larger supercells have yielded virtually the same phonon curves. Some of the acoustic phonon dispersion relation curves show mild numerical instabilities (imaginary frequencies for some segments of the curves), originating most probably from the coupling of the chain vibrations to the rotation and translations. We have not pursued this topic further, as the phonon frequencies at the Γ point—needed to assess the finite oligomers frequencies convergence—are not affected by these instabilities. Moreover, as we mentioned, the instabilities are related only to the acoustic phonons, which are not in the scope of the IR and Raman spectroscopy.

We stress again that the goal of this work is the evolution of vibrational spectra with system size, not the exact prediction of vibrational spectra of particular molecular systems. We therefore avoided arbitrary fitting of the DFTB parameters to experimental spectra that would reduce their transferability, and we did not resort to elaborate scaling techniques that were employed for instance in refs. [2, 3]. The reported vibrational spectra are therefore based on the unscaled, raw harmonic SCC-DFTB vibrational frequencies. We also stress that the present calculations correspond only to a very simplified model, in which we analyze a single, gas phase polymer chain at 0 K using harmonic vibrational frequencies and intensities. Bringing this model closer to experimental reality would require including anharmonic effects in the formalism, considering many entangled chains interacting via intermolecular forces, including finite temperature effects, and considering many further methodological amendments.


The simulated IR spectra for the series of finite oligoynes, cis- and trans-oligoacetylenes, and oligoethylenes are presented in Fig. 1. The Raman spectra for the analogous systems are shown in Fig. 2. All plots are arranged in three-dimensional arrays, allowing for simultaneous comparison of the vibrational frequency (side horizontal axis), band intensity (vertical axis), and the size of the structure (front horizontal axis). We think that this way of presenting our results helps the reader to better perceive the convergence toward the infinite limit. It is clear that for all the studied systems, rather fast convergence, both with respect to the position and the intensity of the bands, is observed. The details of the frequency convergence for the IR and Raman active bands of the studied oligomers are analyzed in Fig. 3. Note that only those modes are displayed which are also observed in the infinitely long systems. The intensity convergence can manifest itself in a twofold manner: i) for the IR spectra of finite polyynes, the intensity of each band approaches a constant, ii) for the remaining spectra, the bands intensities above certain N tend toward linear scaling with the number of carbon atoms in the model. The interpretation and significance of this behavior are explained below. The number of carbon atoms necessary for displaying the convergent behavior in the simulated spectra is between 20 and 90, depending on the type of the chain and character of the band. The slowest convergence is observed for the skeletal vibrations of the conjugated systems, for which substantially longer chains must be studied in order to achieve the same degree of consistency (i.e., the frequency shift smaller than 1 cm−1) with the corresponding solid-state calculations like for the other modes. A detailed analysis of the simulated spectra and their convergence pattern is given below separately for each of the studied systems.
Fig. 1

The convergence patterns of the simulated IR spectra for (a) polyynes, (b) cis-polyacetylenes, (c) trans-polyacetylenes, and (d) polyethylenes. The spectra for each system are arranged in a 3D array, where the side horizontal axis corresponds to the location of the vibrational bands, the vertical axis to their IR intensities (in arbitrary units), and the front horizontal axis corresponds to the size of the chain

Fig. 2

The convergence patterns of the simulated Raman spectra for (a) polyynes, (b) cis-polyacetylenes, (c) trans-polyacetylenes, and (d) polyethylenes. The spectra for each system are arranged in a 3D array, where the side horizontal axis corresponds to the location of the vibrational bands, the vertical axis to their Raman intensities (in arbitrary units), and the front horizontal axis corresponds to the size of the chain

Fig. 3

The frequency convergence for the IR and Raman active bands of the finite oligoynes, cis- and trans-oligoacetylenes, and oligoethylenes plotted as a function of the number of carbon atoms in the chain. The frequencies corresponding to the IR-active modes are depicted in blue, and those corresponding to the Raman-active modes in red. Thin dotted horizontal lines correspond to the calculated limiting polymer phonon frequencies at the Γ point


The simulated IR spectra of finite polyynes [29] consist of two strong bands located at approximately 566 and 3254 cm−1 and three less distinct bands at 424, 1970, and 2041 cm−1. The intensive bands correspond to the C≡C−H bending and the C−H stretching, respectively. The small satellite band at 424 cm−1 is associated with bending of the terminal C−C≡C−H group. All these spectral features originate from the hydrogen termination of the finite models and clearly are not present in the infinite chain spectrum. Their positions converge very fast to constant values; for chains consisting of more than ten carbon atoms (five unit cells of the corresponding polymer), no further change in their vibrational frequencies is observed. The remaining spectral features, the low-intensity broad bands with maxima approximately at 1970 and 2041 cm−1 are associated with the C≡C stretching. Their spectral composition displays an interesting and quite complex patterns. The convergence of the band maxima toward constant positions is considerably slower than for the modes involving hydrogens. Intensities of all five computed bands converge toward constant values, which has quite significant consequences as can be seen by the following reasoning. The total IR intensity of a sample is proportional to its volume V = nv, where v is the volume of a single molecule and n is the number of molecules in the sample. Clearly, for linear chains, the molecular volume v grows linearly with the number N of carbon atoms in the molecule. Consequently, the number of molecules n in a constant-volume sample will scale inversely proportional to N. Thus, since the IR signal from a single molecule converges to a constant, the total IR intensity of the studied constant-volume sample will scale like 1/N, vanishing completely in the limit of a perfect crystal (N → ∞). This conclusion is consistent with the corresponding solid-state picture. The longitudinal optical (LO) phonon of polyyne (located by SCC-DFTB at 1951 cm−1 at the Γ point) is of even parity and thus does not contribute to the IR spectrum. Note that the constant intensity pattern is unique for the IR spectrum of polyyne; all other simulated spectra show linear scaling of the band intensities for large N, which leads to a nonvanishing, constant signal from a given volume of the sample.

The calculated Raman spectra of finite polyynes are particularly simple, consisting of a single strong band. Its position converges rapidly to the LO phonon frequency at Γ (1951 cm−1) with deviation of +5.3 cm−1 for N = 60, +1.7 cm−1 for N = 100, and + 0.8 cm−1 for N = 140. We note that SCC-DFTB predicts the absolute value of this frequency too high: scaled DFT predictions and experimental observations place this mode around 1850–1860 cm−1 [3]. The spectral structure of this band is quite complex with approximately 90% of its intensity carried by a single peak and the rest by a comb of less and less intensive, blue-shifted peaks giving rise to a characteristic asymmetric shape of the band. Again, the same conclusion can be drawn from the solid-state phonon dispersion curves, which show characteristic LO phonon softening around the Γ point. Remembering that the Raman scattering probes only the vicinity of the zone center, one may expect the same asymmetric band shape. The intensity of the band in our simulations displays a simple linear relationship to the number of carbon atoms for chains longer than 60 atoms. Following the earlier discussion, we see that the Raman intensity per constant volume (or alternatively: per unit cell of a polyyne 1D crystal) converges to a constant. Further discussion of these phenomena is given in ref. [29].

Cis and trans-oligoacetylenes

The IR spectra of finite cis-oligoacetylenes computed with the SCC-DFTB method consist of four intensive bands located at approximately 473, 715, 1334, and 3019 cm−1. These bands correspond to the following vibrational modes of the infinite cis-polyacetylene chain: in-plane CCC deformation (ν11), out-of-plane CH deformation (ν20), in-plane CH deformation (ν10), and CH stretch (ν12) [30, 31]. The experimentally observed positions of these bands are 448, 740, 1328, and 3057 cm−1 [30]. The calculated SCC-DFTB Raman spectra of cis-oligoacetylenes display three intensive bands located at approximately 860, 1091, and 1447 cm−1. These bands correspond predominantly to the C−C stretching mode (ν4), the C=C stretching mode (ν3), and the C−H bending mode (ν2), respectively. Experiment locates those bands at 910, 1250, and 1540 cm−1 [31, 32]. Note that the vibrational eigendecomposition of these three bands computed by Mulazzi et al. and quoted by Lichtmann et al. [32, 33, 34] is quite different than ours, with all modes having substantial contribution from all three vibrations located by us.

The simulated IR spectra of the finite trans-oligoacetylenes consist of three intensive bands located at approximately 995, 1177, and 2957 cm−1. These bands correspond to the out-of-plane CH deformation (ν7), the in-plane CH deformation (ν6), and the CH stretching mode of the infinite trans-polyacetylene chain, observed in experiment at 1012, 1170, and 3013 cm−1, respectively. The calculated Raman spectra of the finite trans-oligoacetylenes display only two intensive bands located at approximately 901 and 1407 cm−1. The higher-frequency mode corresponds to the in-plane CH deformation (ν2) of the infinite trans-polyacetylene chain and is observed in experiment at 1457 cm−1. The lower frequency mode corresponds in our calculations to the CC stretch (ν4) and is observed in experiment at 1066 cm−1.

Most of the frequencies of the IR and Raman active bands converge very fast to their solid-state positions. In principle, the oligoacetylene chains containing more than 50 carbon atoms display the same frequencies like those calculated using frozen phonon approximation for the corresponding infinite polyacetylene chains. Only four vibrational modes—two for trans-oligoacetylenes and two for cis-oligoacetylenes, for details see Fig. 3—show slower convergence. The frequencies of the ν2 modes of both oligoacetylenes, which can be characterized as the in-plane C−H bend, converge for somewhat longer chains containing approximately 75 carbon atoms. The slowest convergence is displayed by the skeletal vibrations of both oligoacetylene chains, ν3 of cis-oligoacetylenes and ν4 of trans-oligoacetylenes, which can be described as the C=C stretch in both cases. Apparently, the π-conjugation effect responsible for the delocalization of the double bonds over the whole molecule is responsible for this slow convergence. For the longest studied here oligoacetylene containing 150 carbon atoms, the difference with the phonon frequency at the Γ point of the corresponding one-dimensional solid is as large as +2.1 cm−1 for trans-oligoacetylene and + 1.1 cm−1 for cis-oligoacetylene. We conclude this analysis giving the analogous deviations for shorter chains, which are 5.2 and 2.8 cm−1 for chains with 100 carbon atoms, 8.7 and 4.8 cm−1 for chains with 80 carbon atoms, and 30.5 and 14.3 cm−1 for chains with 50 carbon atoms (Figs. 4 and 5).
Fig. 4

The irregularities observed in the frequency convergence patterns in our simulations. For details, see text

Fig. 5

Comparison of the experimental and the simulated SCC-DFTB spectra of short polyyne chains. Experimental spectra are taken from ref. [35]


The simulated IR spectra of finite oligoethylenes consist of four distinct bands located at approximately 1237, 1466, 2891, and 2995 cm−1. The two high-frequency modes correspond to the symmetric (2891 cm−1) and asymmetric (2995 cm−1) CH stretch of the methylene groups. The equivalent vibrations of polyethylene, denoted as ν1(π) and ν6(π), are observed in experiment [36, 37, 38, 39, 40] at 2851 and 2919 cm−1, respectively, while the scaled (0.966) B3LYP/6-31G* calculations locate them at 2927 and 2976 cm−1 [40]. The SCC-DFTB band at 1466 cm−1 corresponds to the scissoring motion of the methylene groups. Its polyethylene counterpart ν2(π) is observed experimentally at 1468 cm−1. The remaining band at 1237 cm−1 corresponds to the methylene wagging ν3(0), which is observed in experiment at 1176 cm−1. The B3LYP/6-31G* calculations locate ν2(π) and ν3(0) at 1492 and 1174 cm−1, respectively.

It is appropriate to explain here the nomenclature used for the classification of the optically active vibrational modes of polyethylene. The symmetry of the vibrational modes of an infinite polyethylene chain is traditionally described using a purely translational unit cell containing two methylene units. One could in principle use the smallest possible unit cell, containing only a single methylene fragment, with two additional symmetry elements: a screw axis and a glide plane. In this case, one would obtain nine different phonon dispersion curves, two acoustic (ν5 and ν9) and the remaining ones optical. These modes can be IR or Raman-active either at the Γ point (kx, ky, kz) = (0, 0, 0) or in the X point (kx, ky, kz) = (π, π, π). Enlarging the unit cells to two methylene units folds the Brillouin zone (BZ) in half, mapping the X point of the smaller unit cell onto the Γ point of the larger unit cell and giving 18 phonon frequencies at the new Γ point. These new frequencies are labeled as ν1ν9 with additional index (0) or (π), referring to the position of the point in the twice larger BZ. Note that the additional index can also be interpreted as the phase difference between the adjacent methylene fragments for a given vibrational mode. Note also that for all the IR and Raman-active vibrational modes in our SCC-DFTB simulations of finite oligoethylenes, the adjacent two-methylene unit cells vibrate in phase, in a close analogy to the translationally invariant vibrations of infinite polyyne chain. The important difference, however, concerns the amplitude of the vibration. In an infinite chain, the amplitude is identical for each translation-equivalent unit cell, while for the finite oligoethylenes studied here, the distribution of the amplitudes reproduces the shape of the fundamental harmonic vibration of a finite string.

The simulated SCC-DFTB Raman spectra of oligoethylenes consist of two families of bands. The high-frequency bands are composed of two peaks, at 2863 and 2959 cm−1, corresponding to the symmetric and asymmetric CH stretch of the methylene groups. The analogous vibrations of infinite polyethylene chain, ν1(0) and ν6(0), are observed in experiment at 2848 and 2883 cm−1 [36, 37, 38, 39, 40]. The second family of bands is located between 900 and 1450 cm−1 and displays a quite complex shape. A careful analysis allows for differentiating six main peaks, located at 938, 1069, 1204, 1305, 1393, and 1443 cm−1. The inspection of the associated vibrational eigenvectors shows that those peaks display one-to-one correspondence with the experimentally observed Raman-active peaks of the infinite polyyne chain, which are listed here in the analogous order: CC stretch (ν4(π) at 1061 cm−1), skeletal angle bend (ν4(0) at 1131 cm−1), the rocking motion of the methylene groups (ν7(0) at 1168 cm−1), methylene twist (ν7(π) at 1295 cm−1), methylene wagging (ν3(π) at 1370 cm−1), and the scissoring motion of the methylene groups (ν2(0) at 1440 cm−1) [36, 37, 38, 39, 40, 41, 42].

Our calculations reproduce all the IR and Raman-active fundamental modes of the infinite polyethylene chain but ν8(π), which is observed in experiment at 725 cm−1. A careful inspection of Figs. 1 and 6a shows that this band is also present in our simulations; however, its intensity is quite small. The position of this band in the SCC-DFTB IR spectrum is 740 cm−1. It may be worth mentioning that the only IR and Raman inactive mode of polyethylene, ν8(0), observed at 1050 cm−1 in experiment, is reproduced at 1121 cm−1 by our solid-state SCC-DFTB calculations. Note that this mode cannot be easily accessed from our SCC-DFTB calculations for finite oligoethylenes unless one performs laborious analysis of the vibrational eigenvectors to identify the desired local vibrational eigenmode of polyethylene with appropriate global characteristic of the string fundamental harmonic vibration.
Fig. 6

Comparison of the simulated SCC-DFTB vibrational spectra of cis-polyacetylene, trans- polyacetylene, and polyethylene with experiment: a) IR spectra and b) Raman spectra. The experimental results are taken from refs. [43, 44, 45] (Raman) and ref. [46] (IR). The simulated spectra correspond to the longest studied oligomer chains for each type of system

The analysis of the simulated IR and Raman spectra of finite oligoethylenes suggests that the convergence toward the infinite systems is already achieved for much shorter chains than for oligoynes and oligoacetylenes. The positions of the bands, shown in detail in Fig. 3, are practically identical for chains longer than 30 methylene units with the exception of the ν3(0) and ν4(0) modes, which require a chain of approximately twice longer length for a similar degree of consistence with the solid-state calculations. Note that the intensity convergence is achieved even faster; for chains longer than C20, the band intensities scale approximately linearly with the number of carbon atoms, suggesting constant IR and Raman signals for a sample of a constant volume.


The simulated convergence rates for particular vibrations of the finite carbon chains can be used for estimating the convergence rates for higher-dimensional carbon structures. In particular, the presented results for oligoethylene chains can be used for assessing the convergence rate of nanocrystalline diamond models, which could not be accessed from direct simulations [9]. As we mentioned above, the intensity convergence is achieved very fast, for chains containing approximately 20 carbon atoms. The associated length of such a chain is equal to 24.7 Å. It is thus reasonable to expect that analogous 3D structures with the volume of (24.7 Å)3 would display a similar degree of the intensity convergence rate. Equation (1) from ref. 1 allows us to relate these quantities to the number of carbon atoms in a given nanodiamond model, which are 626 for the octahedral symmetry and 573 for the tetrahedral symmetry. Since the studied nanodiamond models were larger than the number determined above, we observe that the intensity convergence can be analyzed only if the evolution pattern of the associated vibrational eigenvectors has been sufficiently converged. As signalized earlier, the convergence rate for the positions of the bands is considerably slower. It is observed for chains with approximately 30 carbon atoms with the exception of the skeletal modes, which need a model approximately twice the size to show a similar rate of convergence to the solid-state model. The two modes of polyethylene, which correspond to the Raman-active T2 mode of diamond, are ν4(π) and ν4(0), both with clear skeletal character. Their frequency convergence is illustrated in Fig. 3. One needs at least 22 carbon atoms to get the positions of the bands with an error smaller than 10 cm−1, 31 atoms for an error smaller than 5 cm−1, and 64 atoms for an error smaller than 1 cm−1. These quantities correspond to 815, 2145, and 17,169 of carbon atoms, respectively, in the octahedral nanodiamond models and to 730, 1800, and 12,761 of carbon atoms, respectively, in the tetrahedral nanodiamond models. The obtained estimates suggest that it should be possible, in principle, to observe in simulation a clear and smooth evolution pattern between the calculated Raman spectra of nanodiamonds and the experimentally recorded Raman spectrum of a single crystal.

In general, the convergence of the simulated IR and Raman spectra is very smooth, both with respect to the positions of the bands and to their intensities. The only irregularities detected during the analysis of Fig. 3 are those for the mode ν4 of trans-oligoacetylenes and the mode ν11 of cis-oligoacetylenes. Since these irregularities have a quite interesting interpretation, we discuss them here in detail. The detailed shape of the frequency convergence for the two modes in question is shown in Fig. 4. For the mode ν11, the plot consists of five disjointed segments and for the mode ν4, two disjointed segments. In both cases the discontinuities are caused by strong mixing of these modes with other molecular vibrational modes of quasidegenerate frequency. The other modes carry very small IR and Raman intensity, but the strong mixing results in an intensity borrowing leading to two, almost degenerated signals in the vibrational spectra. Note that the magnitude of the resulting splitting is rather small and these effects are practically undetectable from the analysis of Figs. 1 and 2. The convergence irregularity is particularly intriguing for ν11, for which five nearly parallel modes are responsible for the observed effect. These modes correspond to the low-energy overtone deformations of the chain and in the limit of infinitely many atoms would converge to the acoustic phonons of the polymer.

The comparison of the computed SCC-DFTB results with experimental data spectra can be performed only for relatively short oligoynes. No experimental data is available for the infinite polyyne chains despite the quite substantial efforts invested in synthesis of this exciting, hypothetical form of elemental carbon. The longest synthesized chains contain up to 20 acetylenic units and are usually terminated with bulky terminal groups. The H-terminated oligoynes are shorter and contain up to 13 acetylenic units. Table 1 gives a comparison between the calculated vibrational frequencies of the IR active modes and their experimental values, which have been recorded for several short oligoynes (N = 4, 6, and 8) [35, 47, 48, 49]. The agreement between SCC-DFTB and experiment is reasonable, especially with regard to the positions of the CC stretching mode. Figure 5 shows the comparison between the calculated SCC-DFTB Raman spectra for a series of short oligoynes: C2nH2 with n = 4–8 and experiment [35]. The general trend—two active bands in each spectrum with gradually diminishing separation—is well reproduced. The correspondence between the positions of the experimental and calculated bands is reasonable with the largest discrepancy of 37 cm−1. The main difference concerns too large of an intensity of the left band.
Table 1

Comparison of the simulated and experimentally observed frequencies of the IR-active vibrational modes for short oligoyne chains

























aRefs. [47, 48, 49]

bAverage of P and R branches

The comparison of the simulated IR spectra of finite cis-oligoacetylenes, trans- oligoacetylenes, and oligoethylenes with the experimental [46] IR spectra of cis-polyacetylene, trans-polyacetylene, and polyethylene is performed in Fig. 6a. For cis-polyacetylene, the correspondence between the calculations and the experiment is reasonable, even if the intensity pattern of some of the peaks is distorted. For the remaining two systems, the correspondence is rather poor with most of the spectral features either reproduced with too small or too large of an intensity. Note that the differences are so distinct that for these two systems it is even difficult to state positively that the simulated and experimental spectra refer to the same molecular system. Probably, the largest obstacle in reproducing the experimentally recorded spectrum lies in the fact that we try to reproduce the solid system of many entangled oligoacetylene and oligoethylene fibers using single, noninteracting fibers in its gas-phase equilibrium geometry. It is clear that in this way we completely neglect the chain-chain interactions, nonequilibrium geometry effects, and possible sample imperfections (e.g., chain branching). These effects can be the explanation of the fact that the quite substantial IR intensity at 1237 cm−1 associated with the in-phase wagging motion of the CH2 groups in the simulated oligoethylene spectra is almost completely depreciated by the experimental conditions, which allow neither for undisturbed hydrogen wagging nor for the collective motion of the whole system required for producing sizable dipole moment change. On the other hand, the experimental spectrum shows bands located at around 725 cm−1 and corresponding to the CH2 rocking. It would be definitely very interesting to investigate why in the SCC-DFTB calculation this mode is almost invisible due to its low intensity. We feel that the next natural step toward reproducing the experimentally observed IR spectrum of these systems should be based on probing the dipole moment of the solid-like cluster of oligoacetylenes or oligoethylenes during the finite-temperature SCC-DFTB molecular trajectory and obtaining the IR signal from Fourier transform of the corresponding autocorrelation function like for example in ref. [50].

The comparison of the simulated Raman spectra of analogous systems, given in Fig. 6b, gives much closer resemblance between the experimental and theoretical findings. For cis-polyacetylene, the experimental spectrum [43] displays three intensive peaks in addition to other, less distinct spectral features. Our simulated Raman spectrum reproduces this pattern even if the most intensive peak is shifted toward lower energies by some 160 cm−1. For trans-polyacetylene, the correspondence between the experiment [44] and theory is even better with two intensive peaks reproduced by simulations with too small frequencies (approximately 170 cm−1 for the more intensive band). The analogous comparison for polyethylene shows that the calculated and experimental [45] Raman spectra have a quite similar pattern of bands. In the CH stretch region, positions of both bands are quite well reproduced despite their too small relative intensity. For the spectral window between 800 cm−1 and 1500 cm−1, not only the peak pattern but also the intensity in SCC-DFTB calculation are quite similar.

Comparing the simulated IR and Raman spectra with experiment, one probably cannot miss the impression that the Raman spectra are reproduced in a much better degree than the IR spectra. We do not fully understand this phenomenon and can only speculate here on its origin. One of the possible explanations may come from a weaker dependence of the invariants of the molecular polarizability on the environment. Another possible explanation can come from the way SCC-DFTB assesses the molecular dipole moments and polarizabilities needed for computing the IR and Raman intensities. While the first ones are computed directly from Mulliken induced charges, the second ones are computed as derivatives of the total energy with respect to the external electric field.


We simulated the IR and Raman spectra of finite oligoyne, cis-oligoacetylene, trans-oligoacetylene, and oligoethylene chains containing up to a few hundreds of atoms using the SCC-DFTB method. The convergence pattern observed in the simulated spectra was analyzed separately for each of the studied systems. The discovered regularities can be summarized here as follows.
  • Convergence of the band intensities in the simulated IR (see Fig. 1) and Raman spectra (see Figs. 1 and 2, respectively) is achieved for chains containing approximately 60 carbon atoms. The convergence is noticeably faster for chains without π-conjugation.

  • The convergence of band intensities manifests itself in two possible ways: a) convergence toward a constant value and b) convergence toward linear scaling with the number of carbon atoms in the chain. The convergence of type a is associated with the vibrational activity of the terminal fragments of a given chain; it signifies that such a band will be optically inactive in an infinitely long polymer. The convergence of type b is associated with vibrational modes resembling the fundamental harmonic vibrations of a finite string, i.e., modes, in which the adjacent monomer fragments vibrate in phase.

  • The convergence of band locations to their solid-state positions is achieved with a few exceptions for relatively short chains containing approximately 30–50 monomer units. The exceptions usually concern the skeletal vibrational modes of the chains. For these modes, the rate of convergence seems to be related to the degree of the π conjugation in a given chain. The skeletal vibrations in oligoethylenes (systems without π conjugation) converge for approximately 60 carbon atoms, while for the conjugated systems (oligoynes and oligoacetylenes) no perfect (within 1 cm−1) correspondence to the solid-state calculations is observed even for chains containing 150 carbon atoms.

  • It is remarkable that the observed convergence patterns, for both intensities and the locations of the bands, are very smooth. The only (practically negligible) irregularities correspond to the bifurcations observed in the frequency convergence of a single mode of cis-oligoacetylenes and a single mode of trans-oligoacetylenes, which originate from very local mixing of these modes with other, quasidegenerate molecular vibrations. For details, see Figs. 3 and 4.

  • The simulated Raman spectra of long oligomers show quite reasonable correspondence to the available experimental data. The simulated IR spectra display much worse agreement with experiment. Possible explanations for this behavior are discussed.

The simulated convergence rate for the oligoethylene chains can be used to estimate the minimal number of atoms necessary to observe the convergence in the evolution of Raman spectra of nanocrystalline diamonds. Our calculations suggest that models containing approximately 2000 carbon atoms should reproduce the positions of the IR and Raman active bands with errors smaller than 5 cm−1 and models containing approximately 15,000 carbon atoms, with errors smaller than 1 cm−1. As the observed intensity pattern usually requires a smaller number of atoms to observe the evolution convergence, we expect that quantum chemical calculations of Raman spectra of nanodiamonds up to 20,000 carbon atoms should answer all the possible ambiguities concerning the observed and simulated Raman-active bands in diamond-containing materials.

We believe that our results demonstrate clearly that “infinity” can manifest itself in molecular systems at a surprisingly small scale. We hope that our results (see also refs. [26] and [29]) will be useful and will give valuable motivation to all those who study various aspects of finiteness in extended systems: lack of translational periodicity, presence of defects, effects of finite size, convergence of various physical and chemical properties, etc.



Ministry of Science and Technology, Taiwan (MOST 105-2113-M-009-018-MY3) and the Center for Emergent Functional Matter Science of National Chiao Tung University from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project funded by the Ministry of Education, Taiwan. We are grateful to the National Center for High-performance Computing, Taiwan for computer time and facilities.


  1. 1.
    Aljibury AL, Snyder RG, Strauss HL, Raghavachari K (1986) The structure of n-alkanes: high precision ab initio calculation and relation to vibrational spectra. J Chem Phys 84:6872–6878CrossRefGoogle Scholar
  2. 2.
    Kofranek M, Lischka H, Karpfen A (1992) From butadiene to polyacetylene: an ab initio study on the vibrational spectra of polyenes. J Chem Phys 96:982–996CrossRefGoogle Scholar
  3. 3.
    Yang S, Kertesz M, Zolyomi V, Kurti J (2007) Application of a novel linear/exponential hybrid force field scaling scheme to the longitudinal Raman active mode of polyyne. J Phys Chem A 111:2434–2441CrossRefGoogle Scholar
  4. 4.
    Yang S, Kertesz M (2008) Linear Cn clusters: are they acetylenic or cumulenic? J Phys Chem A 112:146–151CrossRefGoogle Scholar
  5. 5.
    Choi CH, Kertesz M (1997) The effects of electron correlation on the degree of bond alternation and electronic structure of oligomers of polyacetylene. J Chem Phys 107:6712–6721CrossRefGoogle Scholar
  6. 6.
    Pulay P (1995) Analytical derivative techniques and the calculation of vibrational spectra. In: Yarkony D (ed) Modern electronic structure theory. Part II. World Scientific, Singapore, pp 1191–1240CrossRefGoogle Scholar
  7. 7.
    Delgado-Venegas RI, Mejía-Rodríguez D, Flores-Moreno R, Calaminici P, Köster AM (2016) Analytic second derivatives from auxiliary density perturbation theory. J Chem Phys 145:224103CrossRefGoogle Scholar
  8. 8.
    Flores-Moreno R, Köster AM (2008) Auxiliary density perturbation theory. J Chem Phys 128:134105CrossRefGoogle Scholar
  9. 9.
    Li WF, Irle S, Witek HA (2010) Convergence in the evolution of nanodiamond Raman spectra with particle size: a theoretical investigation. ACS Nano 4:4475–4486CrossRefGoogle Scholar
  10. 10.
    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268CrossRefGoogle Scholar
  11. 11.
    Eisler S, Slepkov AD, Elliott E, Luu T, McDonald R, Hegmann FA, Tykwinski RR (2005) Polyynes as a model for carbyne: synthesis, physical properties, and nonlinear optical response. J Am Chem Soc 127:2666–2676CrossRefGoogle Scholar
  12. 12.
    Elstner M, Jalkanen KJ, Knapp-Mohammady M, Frauenheim T, Suhai S (2001) Energetics and structure of glycine and alanine based model peptides: approximate SCC-DFTB, AM1 and PM3 methods in comparison with DFT, HF and MP2 calculations. Chem Phys 263:203–219CrossRefGoogle Scholar
  13. 13.
    Krüger T, Elstner M, Schiffels P, Frauenheim T (2005) Validation of the density-functional based tight-binding approximation method for the calculation of reaction energies and other data. J Chem Phys 122(1–5):114110CrossRefGoogle Scholar
  14. 14.
    Elstner M, Frauenheim T, Kaxiras E, Seifert G, Suhai S (2000) A self-consistent charge density-functional based tight-binding scheme for large biomolecules. Phys Status Solidi B 217:357–376CrossRefGoogle Scholar
  15. 15.
    Witek HA, Irle S, Morokuma K (2004) Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method. J Chem Phys 121:5163–5170CrossRefGoogle Scholar
  16. 16.
    Witek HA, Morokuma K (2004) Systematic study of vibrational frequencies calculated with the self-consistent-charge density-functional tight-binding method. J Comput Chem 25:1858–1864CrossRefGoogle Scholar
  17. 17.
    Małolepsza E, Witek HA, Morokuma K (2005) Accurate vibrational frequencies using the self-consistent-charge density-functional tight-binding method. Chem Phys Lett 412:237–243CrossRefGoogle Scholar
  18. 18.
    Witek HA, Morokuma K, Stradomska A (2005) Modeling vibrational spectra using the self-consistent-charge density-functional tight-binding method. II. Infrared spectra. J Theor Comput Chem 4:639–655CrossRefGoogle Scholar
  19. 19.
    Witek HA, Morokuma K, Stradomska A (2004) Modeling vibrational spectra using the self-consistent-charge density-functional tight-binding method. I. Raman spectra. J Chem Phys 121:5171–5178CrossRefGoogle Scholar
  20. 20.
    Małolepsza E, Witek HA, Irle S (2007) Comparison of geometric, electronic, and vibrational properties for isomers of small fullerenes C20–C36. J Phys Chem A 111:6649–6657CrossRefGoogle Scholar
  21. 21.
    Małolepsza E, Lee YP, Witek HA, Irle S, Lin CF, Hsieh HM (2009) Comparison of geometric, electronic, and vibrational properties for all pentagon/hexagon-bearing isomers of fullerenes C38, C40, and C42. Int J Quantum Chem 109:1999–2011CrossRefGoogle Scholar
  22. 22.
    Witek HA, Trzaskowski B, Małolepsza E, Morokuma K, Adamowicz L (2007) Computational study of molecular properties of aggregates of C60 and (16, 0) zigzag nanotube. Chem Phys Lett 446:87–91CrossRefGoogle Scholar
  23. 23.
    Gaus M, Chou CP, Witek HA, Elstner M (2009) Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons. J Phys Chem A 113:11866–11881CrossRefGoogle Scholar
  24. 24.
    Witek HA, Irle S, Zheng G, de Jong W, Morokuma K (2006) Modeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: vibrational spectra and electronic structure of C28, C60, and C70. J Chem Phys 125(1–15):214706CrossRefGoogle Scholar
  25. 25.
    Kazachkin DV, Nishimura Y, Witek HA, Irle S, Borguet E (2011) Dramatic reduction of IR cross-sections for molecules adsorbed in single wall carbon nanotubes. J Am Chem Soc 129:8191–8198CrossRefGoogle Scholar
  26. 26.
    Li WF, Andrzejak M, Witek HA (2012) Evolution of physical properties of conjugated systems. Phys Status Solidi B 249:306–316CrossRefGoogle Scholar
  27. 27.
    Witek HA, Irle S (2016) Diversity in electronic structure and vibrational properties of fullerene isomers correlates with cage curvature. Carbon 100:484–491CrossRefGoogle Scholar
  28. 28.
    Aradi B, Hourahine B, Frauenheim T (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111:5678–5684CrossRefGoogle Scholar
  29. 29.
    Chou CP, Li WF, Witek HA, Andrzejak M (2011) Vibrational spectroscopy of linear carbon chains. In: Nemes L, Irle S (eds) Spectroscopy, dynamics and molecular theory of carbon plasmas and vapors. World Scientific, Hackensack, pp 375–415Google Scholar
  30. 30.
    Shirakawa H, Ikeda S (1971) Infrared spectra of poly(acetylene). Polym J 2:231–244CrossRefGoogle Scholar
  31. 31.
    Hirata S, Iwata S (1997) Density functional crystal orbital study on the normal vibrations of polyacetylene and polymethineimine. J Chem Phys 107:10075–10084CrossRefGoogle Scholar
  32. 32.
    Lichtmann LS, Imhoff EA, Sarhangi A, Fitchen DB (1984) Resonance Raman spectra of cis (CH)x and (CD)x. J Chem Phys 81:168–184CrossRefGoogle Scholar
  33. 33.
    Mulazzi E (1985) Polarized resonant Raman scattering spectra from stretched trans polyacetylene. Theory. Solid State Commun 55(9):807–810CrossRefGoogle Scholar
  34. 34.
    Tiziani R, Brivio GP, Mulazzi E (1985) Resonant Raman scattering spectra of trans-(CD)x: evidence for a distribution of conjugation lengths. Phys Rev B 31(6):4015–4018CrossRefGoogle Scholar
  35. 35.
    Tabata H, Fujii M, Hayashi S, Doi T, Wakabayashi T (2006) Raman and surface-enhanced Raman scattering of a series of size-separated polyynes. Carbon 44:3168–3176CrossRefGoogle Scholar
  36. 36.
    Krimm S, Liang CY, Sutherland GBBM (1956) Infrared spectra of high polymers. II. Polyethylene. J Chem Phys 25:549–562CrossRefGoogle Scholar
  37. 37.
    Nielsen JR, Woollett AH (1957) Vibrational spectra of polyethylenes and related substances. J Chem Phys 26:1391–1400CrossRefGoogle Scholar
  38. 38.
    Nielsen JR, Holland RF (1961) Dichroism and interpretation of the infrared bands of oriented crystalline polyethylene. J Mol Spectrosc 6:394–418CrossRefGoogle Scholar
  39. 39.
    Brown RG (1963) Raman spectra of polyethylenes. J Chem Phys 38:221–225CrossRefGoogle Scholar
  40. 40.
    Hirata S, Iwata S (1998) Density functional crystal orbital study on the normal vibrations and phonon dispersion curves of all-trans polyethylene. J Chem Phys 108:7901–7908CrossRefGoogle Scholar
  41. 41.
    Snyder RG (1967) A revised assignment of the B2g methylene wagging fundamental of the planar polyethylene chain. J Mol Spectrosc 23:224–228CrossRefGoogle Scholar
  42. 42.
    Snyder RG (1969) Raman spectrum of polyethylene and the assignment of the B2g way fundamental. J Mol Spectrosc 31:464–465CrossRefGoogle Scholar
  43. 43.
    Rakovic D, Stepanyan SA, Gribov LA, Panchenko YN (1982) The solution of the inverse spectroscopic problem for the IR spectra of trans- and cis-hexatrienes. J Mol Struct 90:363–377Google Scholar
  44. 44.
    Kim JY, Furukawa Y, Sakamoto A, Tasumi M (2002) Raman studies on the self-localized excitations in lightly and heavily doped trans-polyacetylene with sodium. J Phys Chem A 106:8876–8882Google Scholar
  45. 45.
    Hendra PJ, Agbenyega JK (1993) The Raman spectra of polymers, 1st edn, chap C. Wiley, Chichester, p 6Google Scholar
  46. 46.
    Hummel DO (1991) Atlas of polymer and plastics analysis, 3rd edn. Wiley-VCH, Munich Google Scholar
  47. 47.
    Khlifi M, Paillous P, Delpech C, Nishio M, Bruston P, Raulin F (1995) Absolute IR band intensities of diacetylene in the 250–4300 cm−1 region: implications for Titan’s atmosphere. J Mol Spectrosc 174:116–122CrossRefGoogle Scholar
  48. 48.
    Shindo F, Benilan Y, Guillemin JC, Chaquin P, Jolly A, Raulin F (2003) Ultraviolet and infrared spectrum of C6H2 revisited and vapor pressure curve in Titan's atmosphere. Planet Space Sci 51:9–17CrossRefGoogle Scholar
  49. 49.
    Shindo F, Benilan Y, Chaquin P, Guillemin JC, Jolly A, Raulin F (2001) IR spectrum of C8H2: integrated band intensities and some observational implications. J Mol Spectrosc 210:191–195CrossRefGoogle Scholar
  50. 50.
    Nishimura Y, Lee YP, Irle S, Witek HA (2014) Critical interpretation of CH– and OH– stretching regions for infrared spectra of methanol clusters (CH3OH)n (n = 2–5) using self-consistent-charge density functional tight-binding molecular dynamics simulations. J Chem Phys 141:094303CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Molecular Science and Department of Applied ChemistryNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Waseda Research Institute for Science and Engineering (WISE)Waseda UniversityTokyoJapan
  3. 3.Center for Emergent Functional Matter Science, National Chiao Tung UniversityHsinchuTaiwan
  4. 4.Institute for Advanced Research and Department of ChemistryNagoya UniversityNagoyaJapan
  5. 5.Computational Sciences and Engineering Division & Chemical Sciences DivisionORNLOak RidgeUSA

Personalised recommendations