Advertisement

Local and nonlocal counterparts of global descriptors: the cases of chemical softness and hardness

  • Marco Franco-Pérez
  • Carlos A. Polanco-Ramírez
  • José L. Gázquez
  • Paul W. Ayers
Original Paper
  • 67 Downloads
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Abstract

A new strategy, recently reported by us to develop local and linear (nonlocal) counterparts of global response functions, is applied to study the local behavior of the global softness and hardness reactivity descriptors. Within this approach a local counterpart is designed to identify the most important molecular fragments for a given chemical response. The local counterpart of the global softness obtained through our methodology corresponds to the well-known definition of local softness and, in agreement with what standard conceptual chemical reactivity in density functional theory dictates, it simply reveals the softest sites in a molecule. For the case of the local hardness, we obtain two expressions that lead to different information regarding the values of the hardness at the different sites within a chemical species. The performance of these two proposal were tested by comparing their corresponding atom-condensed values to experimentally observed reactivity trends for electrophilic attack on benzene and ethene derivatives.

Keywords

Global response functions Local and nonlocal reactivity indices Thermodynamic softness Chemical hardness Local softness Local hardness 

Notes

Acknowledgments

PWA thanks NSERC and support from the Canada Research Chairs and Compute Canada. We thank the Laboratorio de Supercómputo y Visualización of Universidad Autónoma Metropolitana-Iztapalapa and the Laboratorio Nacional de Cómputo de Alto Desempeño (LANCAD) for the use of their facilities. CPR was supported in part by Conacyt through a doctoral fellowship. JLG thanks Conacyt for grant 237045. We dedicate this work to Prof. Pratim Chattaraj on the occasion of his 60th anniversary for his great contributions to the density functional theory of chemical reactivity.

References

  1. 1.
    Parr R, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Chermette H (1999) J Comput Chem 20:129–154CrossRefGoogle Scholar
  3. 3.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873CrossRefGoogle Scholar
  4. 4.
    Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101:520–534CrossRefGoogle Scholar
  5. 5.
    Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065–2091CrossRefGoogle Scholar
  6. 6.
    Chattaraj PK, Roy DR (2007) Chem Rev 107:PR46–PR74CrossRefGoogle Scholar
  7. 7.
    Gázquez JL (2008) J Mex Chem Soc 52:3–10Google Scholar
  8. 8.
    Chattaraj Ed PK (2009) Chemical reactivity theory: a density functional view. CRC, Boca RatonCrossRefGoogle Scholar
  9. 9.
    Liu SB (2009) Acta Phys-Chim Sin 25:590–600Google Scholar
  10. 10.
    Chattaraj PK, Giri S, Duley S (2011) Chem Rev 111:PR43–PR75CrossRefGoogle Scholar
  11. 11.
    Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) Charge density and chemical reactivity: a unified view from conceptual DFT. In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, pp 715–764Google Scholar
  12. 12.
    Fuentealba P, Cardenas C (2015) Density functional theory of chemical reactivity. In: Michael Springborg J-OJ (ed) Chemical Modelling: Volume 11, vol 11. The Royal Society of Chemistry, pp 151–174Google Scholar
  13. 13.
    Berkowitz M, Parr RG (1988) J Chem Phys 88:2554–2557CrossRefGoogle Scholar
  14. 14.
    Geerlings P, Fias S, Boisdenghien Z, De Proft F (2014) Chem Soc Rev 43:4989–5008CrossRefGoogle Scholar
  15. 15.
    Fias S, Heidar-Zadeh F, Geerlings P, Ayers PW (2017) Proc Natl Acad Sci U S A 114:11633–11638CrossRefGoogle Scholar
  16. 16.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807CrossRefGoogle Scholar
  17. 17.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  18. 18.
    Yang WT, Parr RG (1985) Proc Natl Acad Sci U S A 82:6723–6726CrossRefGoogle Scholar
  19. 19.
    Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050CrossRefGoogle Scholar
  20. 20.
    Berkowitz M, Ghosh SK, Parr RG (1985) J Am Chem Soc 107:6811–6814CrossRefGoogle Scholar
  21. 21.
    Ghosh SK (1990) Chem Phys Lett 172:77–82CrossRefGoogle Scholar
  22. 22.
    Ayers PW, Parr RG (2008) J Chem Phys 128:184108CrossRefGoogle Scholar
  23. 23.
    Chattaraj PK, Cedillo A, Parr RG (1995) J Chem Phys 103:7645–7646CrossRefGoogle Scholar
  24. 24.
    Ayers PW, Parr RG (2000) J Am Chem Soc 122:2010–2018CrossRefGoogle Scholar
  25. 25.
    Meneses L, Tiznado W, Contreras R, Fuentealba P (2004) Chem Phys Lett 383:181–187CrossRefGoogle Scholar
  26. 26.
    Meneses L, Araya A, Pilaquinga F, Contreras R, Fuentealba P (2007) Chem Phys Lett 446:170–175CrossRefGoogle Scholar
  27. 27.
    Cuevas-Saavedra R, Rabi N, Ayers PW (2011) Phys Chem Chem Phys 13:19594–19600CrossRefGoogle Scholar
  28. 28.
    Gal T, Geerlings P, De Proft F, Torrent-Sucarrat M (2011) Phys Chem Chem Phys 13:15003–15015Google Scholar
  29. 29.
    Gál T (2012) Theor Chem Accounts 131:1223CrossRefGoogle Scholar
  30. 30.
    Polanco-Ramírez CA, Franco-Pérez M, Carmona-Espíndola J, Gázquez JL, Ayers PW (2017) Phys Chem Chem Phys 19:12355–12364CrossRefGoogle Scholar
  31. 31.
    Franco-Pérez M, Ayers PW, Gázquez JL, Vela A (2017) Phys Chem Chem PhysGoogle Scholar
  32. 32.
    Torrent-Sucarrat M, De Proft F, Geerlings P, Ayers PW (2008) Chem Eur J 14:8652–8660CrossRefGoogle Scholar
  33. 33.
    Torrent-Sucarrat M, De Proft F, Ayers PW, Geerlings P (2010) Phys Chem Chem Phys 12:1072–1080Google Scholar
  34. 34.
    Heidar-Zadeh F, Fias S, Vöhringer-Martinez E, Verstraelen T, Ayers PW (2017) Theor Chem Accounts 136:19CrossRefGoogle Scholar
  35. 35.
    Guégan F, Lamine W, Chermette H, Morell C (2018) Phys Chem Chem Phys 20:9006–9010CrossRefGoogle Scholar
  36. 36.
    Franco-Pérez M, Polanco-Ramírez CA, Gázquez JL, Ayers PW (2018) Phys Chem Chem Phys 20:9011–9014CrossRefGoogle Scholar
  37. 37.
    Franco-Pérez M, Gázquez JL, Ayers PW, Vela A (2015) J Chem Phys 143:154103CrossRefGoogle Scholar
  38. 38.
    Hohenberg P, Kohn W (1964) Phys. Rev. B 136:B864–B871CrossRefGoogle Scholar
  39. 39.
    Fuentealba P, Parr RG (1991) J Chem Phys 94:5559–5564CrossRefGoogle Scholar
  40. 40.
    Morell C, Grand A, Toro-Labbe A (2005) J Phys Chem A 109:205–212CrossRefGoogle Scholar
  41. 41.
    Morell C, Grand A, Toro-Labbe A (2006) Chem Phys Lett 425:342–346CrossRefGoogle Scholar
  42. 42.
    Ayers PW, Parr RG (2008) J Chem Phys 129:054111CrossRefGoogle Scholar
  43. 43.
    Gázquez JL, Vela A, Chattaraj PK (2013) J Chem Phys 138:214103CrossRefGoogle Scholar
  44. 44.
    Yang WT, Mortier WJ (1986) J Am Chem Soc 108:5708–5711CrossRefGoogle Scholar
  45. 45.
    Fuentealba P, Perez P, Contreras R (2000) J Chem Phys 113:2544–2551CrossRefGoogle Scholar
  46. 46.
    Ayers PW, Morrison RC, Roy RK (2002) J Chem Phys 116:8731–8744CrossRefGoogle Scholar
  47. 47.
    Bultinck P, Fias S, Alsenoy CV, Ayers PW, Carbó-Dorca R (2007) J Chem Phys 127:034102CrossRefGoogle Scholar
  48. 48.
    Hirshfeld FL (1977) Theor Chim Acta 44:129–138CrossRefGoogle Scholar
  49. 49.
    Nalewajski RF, Parr RG (2000) Proc Natl Acad Sci U S A 97:8879–8882CrossRefGoogle Scholar
  50. 50.
    Heidar-Zadeh F, Ayers PW, Verstraelen T, Vinogradov I, Vohringer-Martinez E, Bultinck P (2018) J Phys Chem A 122:4219–4245CrossRefGoogle Scholar
  51. 51.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian. Gaussian, Inc., WallingfordGoogle Scholar
  52. 52.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  53. 53.
    Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029–5036CrossRefGoogle Scholar
  54. 54.
    Adamo C, Scuseria GE, Barone V (1999) J Chem Phys 111:2889–2899CrossRefGoogle Scholar
  55. 55.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654CrossRefGoogle Scholar
  56. 56.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  2. 2.Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaCiudad de MéxicoMexico
  3. 3.Department of ChemistryMcMaster UniversityHamiltonCanada

Personalised recommendations