Catalytic mechanism of type C sialidase from Streptococcus pneumoniae: from covalent intermediate to final product

  • Jing Xiong
  • Chunchun ZhangEmail author
  • Dingguo XuEmail author
Original Paper


Streptococcus pneumoniae is a Gram-positive human pathogenic bacterium, which is the main cause of pneumonia and meningitis in children and the elderly. Three sialidases (or neuraminidases) encoded from Streptococcus pneumoniae could catalyze the cleavage of sialic acid linkages. This mechanism is directly connected with infection, apoptosis, and signaling, and usually considered to be one of the critical virulence factors. Type C neuraminidase (NanC) is unique because its primary product of Neu5Ac2en is considered to be an inhibitor to the other two sialidases. Experimentally, there are two different pathways for the formation mechanism of Neu5Ac2en catalyzed by NanC. In this work, a combined quantum mechanical and molecular mechanical approach was employed in all calculations. Starting from the covalent sialylated intermediate, we first examined the reaction to Neu5Ac2en and found the reaction prefers a direct proton abstraction mechanism rather than the water mediated proton abstraction mechanism. Free energy profiles can confirm that Neu5Ac2en is the major product of NanC. Functional roles of some important residues were also investigated, e.g., D315 acts as the proton acceptor during the formation of Neu5Ac2en, while the general base for the hydrolytic reaction to Neu5Ac. This study can facilitate the understanding of the catalytic mechanism of NanC and has the potential to aid in future inhibitor design studies.


QM/MM Sialidase C Catalytic mechanism PMF 



This work was funded by the National Key Research and Development Program (No. 2016YFB0700801) and the National Natural Science Foundation of China (No. 21473117). Some of the results described in this work were obtained on the Supercomputing Center of Chinese Academy of Science.

Supplementary material

894_2018_3822_MOESM1_ESM.docx (1.2 mb)
Supporting information 1 Distances between C3 of Neu5Ac unit and the carboxylate group of D315 in the CI complex (covalently sialylated enzyme intermediate); The endocyclic torsion angles for Neu5Ac unit of the CI and two products of Neu5Ac2en and Neu5Ac. B3LYP/MM single point free energy correction strategy. RMSD for the backbone atoms of the CI complex in classical MD simulation. Distance between the oxygen atom of this water molecule and C3 along the simulation time. (DOCX 1270 kb)


  1. 1.
    Kiefel MJ, von Itzstein M (2002) Chem Rev 102:471Google Scholar
  2. 2.
    Taylor G (1996) Curr Opin Struct Biol 6:830CrossRefGoogle Scholar
  3. 3.
    Li N, Ren A, Wang X, Fan X, Zhao Y, Gao GF, Cleary P, Wang B (2015) Proc Natl Acad Sci U S A 112:238CrossRefGoogle Scholar
  4. 4.
    King SJ (2010) Mol Oral Microbiol 25:15CrossRefGoogle Scholar
  5. 5.
    King SJ, Hippe KR, Weiser JN (2006) Mol Microbiol 59:961CrossRefGoogle Scholar
  6. 6.
    Bridy-Pappas AE, Margolis MB, Center KJ, Isaacman DJ (2005) Pharmacotherapy 25:1193CrossRefGoogle Scholar
  7. 7.
    Manco S, Hernon F, Yesilkaya H, Paton JC, Andrew PW, Kadioglu A (2006) Infect Immun 74:4014CrossRefGoogle Scholar
  8. 8.
    Parker D, Soong G, Planet P, Brower J, Ratner AJ, Prince A (2009) Infect Immun 77:3722CrossRefGoogle Scholar
  9. 9.
    Pettigrew MM, Fennie KP, York MP, Daniels J, Ghaffar F (2006) Infect Immun 74:3360CrossRefGoogle Scholar
  10. 10.
    von Itzstein M, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, Phan TV, Smythe ML, White HF, Oliver SW, Colman PM, Varghese JN, Ryan DM, Woods JM, Bethell RC, Hotham VJ, Cameron JM, Penn CR (1993) Nature 363:418Google Scholar
  11. 11.
    Taylor NR, von Itzstein M (1994) J Med Chem 37:616Google Scholar
  12. 12.
    Chokhawala HA, Yu H, Chen X (2007) ChemBioChem 8:194CrossRefGoogle Scholar
  13. 13.
    Mitchell FL, Neres J, Ramraj A, Raju RK, Hillier IH, Vincent MA, Bryce RA (2013) Biochem 52:3740CrossRefGoogle Scholar
  14. 14.
    Pierdominici-Sottile G, Horenstein NA, Roitberg AE (2011) Biochem 50:10150CrossRefGoogle Scholar
  15. 15.
    Frasch ACC (2000) Parasitol Today 16:282CrossRefGoogle Scholar
  16. 16.
    Watts AG, Damager I, Amaya ML, Buschiazzo A, Alzari P, Frasch AC, Withers SG (2003) J Am Chem Soc 125:7532CrossRefGoogle Scholar
  17. 17.
    Rogers IL, Naidoo KJ (2016) ACS Catal 6:6384CrossRefGoogle Scholar
  18. 18.
    Gut H, King SJ, Walsh MA (2008) FEBS Lett 582:3348CrossRefGoogle Scholar
  19. 19.
    Xu G, Li X, Andrew PW, Taylor GL (2008) Acta Crystallogr Sect F Struct Biol Cryst Commun 64:772CrossRefGoogle Scholar
  20. 20.
    Xu G, Potter JA, Russell RJM, Oggioni MR, Andrew PW, Taylor GL (2008) J Mol Biol 384:436CrossRefGoogle Scholar
  21. 21.
    Xu G, Kiefel MJ, Wilson JC, Andrew PW, Oggioni MR, Taylor GL (2011) J Am Chem Soc 133:1718CrossRefGoogle Scholar
  22. 22.
    Owen CD, Lukacik P, Potter JA, Sleator O, Taylor GL, Walsh MA (2015) J Biol Chem 290:27736CrossRefGoogle Scholar
  23. 23.
    Newstead SL, Potter JA, Wilson JC, Xu G, Chien C-H, Watts AG, Withers SG, Taylor GL (2008) J Biol Chem 283:9080CrossRefGoogle Scholar
  24. 24.
    Warshel A, Levitt M (1976) J Mol Biol 103:227CrossRefGoogle Scholar
  25. 25.
    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seigert G (1998) Phys Rev B58:7260CrossRefGoogle Scholar
  26. 26.
    Elstner M, Frauenheim T, Kaxiras E, Seifert G, Suhai S (2000) Phys Status Solidi B217:357CrossRefGoogle Scholar
  27. 27.
    Elstner M (2006) Theor Chem Accounts 116:316CrossRefGoogle Scholar
  28. 28.
    Elstner M, Cui Q, Munih P, Kaxiras E, Frauenheim T, Karplus M (2003) J Comput Chem 24:565CrossRefGoogle Scholar
  29. 29.
    Niehaus TA, Elstner M, Frauenheim T, Suhai S (2001) J Mol Struct (THEOCHEM) 541:185CrossRefGoogle Scholar
  30. 30.
    Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2001) J Phys Chem B 105:569CrossRefGoogle Scholar
  31. 31.
    MacKerell Jr AD, Bashford D, Bellott M, Dunbrack Jr RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher III WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586CrossRefGoogle Scholar
  32. 32.
    Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700CrossRefGoogle Scholar
  33. 33.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926CrossRefGoogle Scholar
  34. 34.
    Brooks III CL, Karplus M (1983) J Chem Phys 79:6312CrossRefGoogle Scholar
  35. 35.
    Brooks III CL, Brunger A, Karplus M (1985) Biopoly 24:843CrossRefGoogle Scholar
  36. 36.
    Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327CrossRefGoogle Scholar
  37. 37.
    Steinbach PJ, Brooks BR (1994) J Comput Chem 15:667CrossRefGoogle Scholar
  38. 38.
    Torrie GM, Valleau JP (1977) J Comput Phys 23:187CrossRefGoogle Scholar
  39. 39.
    Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) J Comput Chem 13:1011CrossRefGoogle Scholar
  40. 40.
    Roux B (1995) Comput Phys Commun 91:275CrossRefGoogle Scholar
  41. 41.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann E, Yazyev O, Austin J, Cammi R, Pomelli C, Ochterski W, Martin RL, Morokuma K, Zakrzewski VG, Voth A, Salvador P, Dannenberg JJ, Dapprich S, Daniels D, Farkas O, Foresman JB, Ortiz JV, Cioslowski, Fox J (2009) Gaussian 09, revision a.01. Gaussian, Inc, WallingfordGoogle Scholar
  42. 42.
    Lee AC, Crippen GM (2009) J Chem Inf Modl 49:2013CrossRefGoogle Scholar
  43. 43.
    Davies MN, Toseland CP, Moss DS, Flower DR (2006) BMC Biochem 7:18CrossRefGoogle Scholar
  44. 44.
    Olsson MHM, Sondergaard CR, Rostkowski M, Jensen JH (2011) J Chem Theo Comput 7:525CrossRefGoogle Scholar
  45. 45.
    Sondergaard CR, Olsson MHM, Rostkowski M, Jensen JH (2011) J Chem Theo Comput 7:2284CrossRefGoogle Scholar
  46. 46.
    Callegari D, Ranaghan KE, Woods CJ, Minari R, Tiseo M, Mor M, Mulholland AJ, Lodola A (2018) Chem Sci 9:2740CrossRefGoogle Scholar
  47. 47.
    Berces A, Whitfield DM, Nukada T (2001) Tetrahedron 57:477CrossRefGoogle Scholar
  48. 48.
    Liu J, Zhang C, Xu D (2012) J Mol Graph Model 37:67CrossRefGoogle Scholar
  49. 49.
    Elstner M, Jalkanen KJ, Knapp-Mohammady M, Frauenheim T, Suhai S (2001) Chem Phys 263:203CrossRefGoogle Scholar
  50. 50.
    Zhou H, Tajkhorshid E, Frauenheim T, Suhai S, Elstner M (2002) Chem Phys 277:91CrossRefGoogle Scholar
  51. 51.
    Range K, Riccardi D, Cui Q, Elstner M, York DM (2005) Phys Chem Chem Phys 7:3070CrossRefGoogle Scholar
  52. 52.
    Cui Q, Elstner M, Karplus M (2002) J Phys Chem B 106:2721CrossRefGoogle Scholar
  53. 53.
    Liu J, Wang X, Xu D (2010) J Phys Chem B 114:1462CrossRefGoogle Scholar
  54. 54.
    Liu J, Zheng M, Zhang C, Xu D (2013) J Phys Chem B 117:10080CrossRefGoogle Scholar
  55. 55.
    Xiong J, Xu D (2017) J Phys Chem B 121:931CrossRefGoogle Scholar
  56. 56.
    Sherwoord P, de Vries AH, Guest MF, Schreckenbach G, Catlow CRA, French SA, Sokol AA, Bromley ST, Thiel W, Turner AJ, Billeter S, Terstegen F, Thiel S, Kendrick J, Sc r, Casci J, Watson M, King F, Karlsen E, Sjøvoll M, Fahmi A, Schäfer A, Lennartz C (2003) J Mol Struct (THEOCHEM) 632:1CrossRefGoogle Scholar
  57. 57.
    Metz S, Kästner J, Sokol AA, Keal TW, Sherwood P (2014) WIREs Comput Mol Sci 4:101CrossRefGoogle Scholar
  58. 58.
    Bruice TC (2002) Acc Chem Res 35:139CrossRefGoogle Scholar
  59. 59.
    Sadiq SK, Coveney PV (2015) J Chem Theory Comput 11:316CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MOE Key Laboratory of Green Chemistry & Technology, College of ChemistrySichuan UniversityChengduPeople’s Republic of China
  2. 2.School of PharmacyChengdu Medical CollegeChengduPeople’s Republic of China
  3. 3.Analytical&Testing CenterSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations