Structures, intermolecular interactions, and chemical hardness of binary water–organic solvents: a molecular dynamics study

  • Sonia M. Aguilera-Segura
  • Francesco Di Renzo
  • Tzonka Mineva
Original Paper
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday


The evolution of structural properties, thermodynamics and averaged (dynamic) total hardness values as a function of the composition of binary water–organic solvents, was rationalized in view of the intermolecular interactions. The organic solvents considered were ethanol, acetonitrile, and isopropanol at 0.25, 0.5, 0.75, and 1 mass fractions, and the results were obtained using molecular dynamics simulations. The site-to-site radial distribution functions reveal a well-defined peak for the first coordination shell in all solvents. A characteristic peak of the second coordination shell exists in aqueous mixtures of acetonitrile, whereas in the water–alcohol solvents, a second peak develops with the increase in alcohol content. From the computed coordination numbers, averaged hydrogen bonds and their lifetimes, we found that water mixed with acetonitrile largely preserves its structural features and promotes the acetonitrile structuring. Both the water and alcohol structures in their mixtures are disturbed and form hydrogen bonds between molecules of different kinds. The dynamic hardness values are obtained as the average over the total hardness values of 1200 snapshots per solvent type, extracted from the equilibrium dynamics. The dynamic hardness profile has a non-linear evolution with the liquid compositions, similarly to the thermodynamic properties of these non-ideal solvents.

Graphical abstract

Computed dynamic total hardness, as a function of the cosolvent mass fraction for water–ethanol (EtOH), water–isopropanol (2PrOH) and water–acetonitrile (AN)


Binary water-organic solvent Molecular dynamics simulations Radial distribution function Hydrogen bond Dynamic chemical hardness 



This work was granted access to the HPC resources of [CCRT/CINES/IDRIS] under the allocation 2017 [×2017087369] made by GENCI (Grand Equipement National de Calcul Intensif] and was partially funded through the ENSCM SINCHEM EMJD PhD grant. SINCHEM is a Joint Doctorate programme selected under the Erasmus Mundus Action 1 Programme (FPA 2013-0037).

Supplementary material

894_2018_3817_MOESM1_ESM.pdf (965 kb)
ESM 1 (PDF 964 kb)


  1. 1.
    Saiz L, Padro JA, Guardia E (1999) Dynamics and hydrogen bonding in liquid ethanol. Mol Phys 97(7):897–905CrossRefGoogle Scholar
  2. 2.
    Chang S et al (2012) Solvent polarity and internal stresses control the swelling behaviour of green wood during dehydration in organic solution. Bioresources 7(2):2418–2430Google Scholar
  3. 3.
    Smith MD et al (2016) Cosolvent pretreatment in cellulosic biofuel production: effect of tetrahydrofuran-water on lignin structure and dynamics. Green Chem 18(5):1268–1277CrossRefGoogle Scholar
  4. 4.
    Smith MD et al (2016) Molecular driving forces behind the tetrahydrofuran–water miscibility gap. J Phys Chem B 120(4):740–747PubMedCrossRefGoogle Scholar
  5. 5.
    Li M-F, Yang S, Sun R-C (2016) Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass. Bioresour Technol 200:971–980PubMedCrossRefGoogle Scholar
  6. 6.
    Bossu J, Le Moigne N, Corn S, Trens P, Di Renzo F (2018) Sorption of water–ethanol mixtures by poplar wood: swelling and viscoelastic behaviour. Wood Sci Technol 52(4):987–1008.
  7. 7.
    Jawad ZA et al (2016) The role of solvent mixture, acetic acid and water in the formation of CA membrane for CO2/N2 separation. Procedia Eng 148:327–332CrossRefGoogle Scholar
  8. 8.
    Pires RM et al (2007) Viscosity and density of water + ethyl acetate + ethanol mixtures at 298.15 and 318.15 K and atmospheric pressure. J Chem Eng Data 52(4):1240–1245CrossRefGoogle Scholar
  9. 9.
    Hurle RL, Easteal AJ, Woolf LA (1985) Self-diffusion in monohydric alcohols under pressure. Methanol, methan (2 H) ol and ethanol. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 81(3):769–779CrossRefGoogle Scholar
  10. 10.
    Pang F-M et al (2007) Densities and viscosities of aqueous solutions of 1-propanol and 2-propanol at temperatures from 293.15 K to 333.15 K. J Mol Liq 136(1):71–78CrossRefGoogle Scholar
  11. 11.
    Grande MdC, Bianchi HL, Marschoff CM (2004) On the density of pure acetonitrile. Anales de la Asociación Química Argentina 92:109–114Google Scholar
  12. 12.
    Cunningham GP, Vidulich GA, Kay RL (1967) Several properties of acetonitrile-water, acetonitrile-methanol, and ethylene carbonate-water systems. J Chem Eng Data 12(3):336–337CrossRefGoogle Scholar
  13. 13.
    Lide DR (2004) CRC handbook of chemistry and physics. 12J204Google Scholar
  14. 14.
    Peeters D, Huyskens P (1993) Endothermicity or exothermicity of water/alcohol mixtures. J Mol Struct 300(Supplement C):539–550CrossRefGoogle Scholar
  15. 15.
    Stokes RH (1987) Excess partial molar enthalpies for (acetonitrile + water) from 278 to 318 K. J Chem Thermodyn 19(9):977–983CrossRefGoogle Scholar
  16. 16.
    Wakisaka A et al (1998) Non-ideality of binary mixtures water–methanol and water–acetonitrile from the viewpoint of clustering structure. J Chem Soc Faraday Trans 94(3):369–374Google Scholar
  17. 17.
    Shaker-Gaafar N et al (1993) p,T-dependence of self-diffusion in liquid ethanol and the propanols. Ber Bunsenges Phys Chem 97(6):805–811CrossRefGoogle Scholar
  18. 18.
    Hurle RL, Woolf LA (1982) Self-diffusion in liquid acetonitrile under pressure. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 78(7):2233–2238CrossRefGoogle Scholar
  19. 19.
    Li Z et al (2017) Molecular dynamics simulation of self-diffusion coefficients for several alkanols. Russ J Phys Chem A 91(7):1260–1269CrossRefGoogle Scholar
  20. 20.
    Akerlof G (1932) Dielectric constants of some organic solvent-water mixtures at various temperatures. J Am Chem Soc 54(11):4125–4139CrossRefGoogle Scholar
  21. 21.
    Wyman J (1931) The dielectric constant of mixtures of ethyl alcohol and water from-5 to 40. J Am Chem Soc 53(9):3292–3301CrossRefGoogle Scholar
  22. 22.
    Venables DS, Schmuttenmaer CA (1998) Far-infrared spectra and associated dynamics in acetonitrile–water mixtures measured with femtosecond THz pulse spectroscopy. J Chem Phys 108(12):4935–4944CrossRefGoogle Scholar
  23. 23.
    Rivelino R et al (2005) Electronic polarization in liquid acetonitrile: a sequential Monte Carlo/quantum mechanics investigation. Chem Phys Lett 407(1):13–17CrossRefGoogle Scholar
  24. 24.
    Jorgensen WL, Briggs JM (1988) Monte Carlo simulations of liquid acetonitrile with a three-site model. Mol Phys 63(4):547–558CrossRefGoogle Scholar
  25. 25.
    Evans M (1983) Molecular dynamics and structure of liquid acetonitrile—a review and computer simulation. J Mol Liq 25(3):149–175CrossRefGoogle Scholar
  26. 26.
    Oldiges C et al (2002) MD calculated structural properties of clusters in liquid acetonitrile/water mixtures with various contents of acetonitrile. J Phys Chem A 106(31):7147–7154CrossRefGoogle Scholar
  27. 27.
    Nikitin AM, Lyubartsev AP (2007) New six-site acetonitrile model for simulations of liquid acetonitrile and its aqueous mixtures. J Comput Chem 28(12):2020–2026PubMedCrossRefGoogle Scholar
  28. 28.
    Lindquist BA, Haws RT, Corcelli SA (2008) Optimized quantum mechanics/molecular mechanics strategies for nitrile vibrational probes: acetonitrile and para-tolunitrile in water and tetrahydrofuran. J Phys Chem B 112(44):13991–14001PubMedCrossRefGoogle Scholar
  29. 29.
    Sato T, Chiba A, Nozaki R (2000) Hydrophobic hydration and molecular association in methanol–water mixtures studied by microwave dielectric analysis. J Chem Phys 112(6):2924–2932CrossRefGoogle Scholar
  30. 30.
    Sato T, Chiba A, Nozaki R (1999) Dynamical aspects of mixing schemes in ethanol–water mixtures in terms of the excess partial molar activation free energy, enthalpy, and entropy of the dielectric relaxation process. J Chem Phys 110(5):2508–2521CrossRefGoogle Scholar
  31. 31.
    Sato T, Chiba A, Nozaki R (2000) Composition-dependent dynamical structures of 1-propanol–water mixtures determined by dynamical dielectric properties. J Chem Phys 113(21):9748–9758CrossRefGoogle Scholar
  32. 32.
    Sato T, Buchner R (2003) Dielectric relaxation spectroscopy of 2-propanol–water mixtures. J Chem Phys 118(10):4606–4613CrossRefGoogle Scholar
  33. 33.
    Matsugami M et al (2016) Hydrogen bonding in ethanol–water and trifluoroethanol–water mixtures studied by NMR and molecular dynamics simulation. J Mol Liq 217:3–11CrossRefGoogle Scholar
  34. 34.
    Pozar M et al (2016) Micro-heterogeneity versus clustering in binary mixtures of ethanol with water or alkanes. Phys Chem Chem Phys 18(34):23971–23979PubMedCrossRefGoogle Scholar
  35. 35.
    Petong P, Pottel R, Kaatze U (2000) Water−ethanol mixtures at different compositions and temperatures. A dieletric relaxation study. J Phys Chem A 104(32):7420–7428CrossRefGoogle Scholar
  36. 36.
    Saiz L, Padró JA, Guàrdia E (1997) Structure and dynamics of liquid ethanol. J Phys Chem B 101(1):78–86CrossRefGoogle Scholar
  37. 37.
    Lam RK, Smith JW, Saykally RJ (2016) Communication: hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy. J Chem Phys 144(19):191103PubMedCrossRefGoogle Scholar
  38. 38.
    Finneran IA et al (2015) Hydrogen bonding in the ethanol-water dimer. Phys Chem Chem Phys 17(37):24210–24214PubMedCrossRefGoogle Scholar
  39. 39.
    Alavi S et al (2010) Hydrogen-bonding alcohol-water interactions in binary ethanol, 1-propanol, and 2-propanol+methane structure II clathrate hydrates. J Chem Phys 133(7):074505PubMedCrossRefGoogle Scholar
  40. 40.
    Pothoczki S, Pusztai L (2017) Intermolecular orientations in liquid acetonitrile: new insights based on diffraction measurements and all-atom simulations. J Mol Liq 225:160–166CrossRefGoogle Scholar
  41. 41.
    Robertson RE, Sugamori SE (1972) The hydrolysis of t-butyl chloride in aquo-organic mixtures: heat capacity of activation and solvent structure. Can J Chem 50(9):1353–1360CrossRefGoogle Scholar
  42. 42.
    Moreau C, Douhéret G (1975) Thermodynamic behavior of water-acetonitrile mixtures excess volumes and viscosities. Thermochim Acta 13(4):385–392CrossRefGoogle Scholar
  43. 43.
    Damewood JR, Kumpf RA (1987) Hydration of polar organic molecules: the interaction of acetonitrile with water. J Phys Chem 91(12):3449–3452CrossRefGoogle Scholar
  44. 44.
    Kovacs H, Laaksonen A (1991) Molecular dynamics simulation and NMR study of water-acetonitrile mixtures. J Am Chem Soc 113(15):5596–5605CrossRefGoogle Scholar
  45. 45.
    Bertie JE, Lan Z (1997) Liquid water−acetonitrile mixtures at 25 °C: the hydrogen-bonded structure studied through infrared absolute integrated absorption intensities. J Phys Chem B 101(20):4111–4119CrossRefGoogle Scholar
  46. 46.
    Takamuku T et al (1998) Liquid structure of acetonitrile−water mixtures by X-ray diffraction and infrared spectroscopy. J Phys Chem B 102(44):8880–8888CrossRefGoogle Scholar
  47. 47.
    Bakó I, Megyes T, Pálinkás G (2005) Structural investigation of water–acetonitrile mixtures: an ab initio, molecular dynamics and X-ray diffraction study. Chem Phys 316(1):235–244CrossRefGoogle Scholar
  48. 48.
    Rowlen KL, Harris JM (1991) Raman spectroscopic study of solvation structure in acetonitrile/water mixtures. Anal Chem 63(10):964–969CrossRefGoogle Scholar
  49. 49.
    Abraham MJ et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25CrossRefGoogle Scholar
  50. 50.
    Bekker H, Berendsen HJC, Dijkstra EJ, Achterop S, Vondrumen R, Vanderspoel D, Sijbers A, Keegstra H, Renardus MKR (1993) GROMACS: a parallel computer for molecular dynamics simulations. In: DeGroot RA, Nadrchal J (eds) Physics computing '92. World Scientific, Songapore, pp 252–256Google Scholar
  51. 51.
    Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1):43–56CrossRefGoogle Scholar
  52. 52.
    Van Der Spoel D et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718CrossRefGoogle Scholar
  53. 53.
    Páll S et al Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In: Markidis S, Laure E (eds) Solving software challenges for exascale: international conference on exascale applications and software, EASC 2014, Stockholm, Sweden, April 2–3, 2014, Revised Selected Papers 2015, Springer, Cham, pp 3–27Google Scholar
  54. 54.
    Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, Mackerell AD Jr (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543–2564Google Scholar
  55. 55.
    Guvench O, Hatcher ER, Venable RM, Pastor RW, Mackerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370Google Scholar
  56. 56.
    Jorgensen WL et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935CrossRefGoogle Scholar
  57. 57.
    Dick TJ, Madura JD (2005) Chapter 5, A Review of the TIP4P, TIP4P-Ew, TIP5P, and TIP5P-E Water Models. in Annual Reports in Computational Chemistry. Elsevier, p 59–74Google Scholar
  58. 58.
    Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105(43):9954–9960CrossRefGoogle Scholar
  59. 59.
    van der Spoel D, van Maaren PJ, Caleman C (2012) GROMACS molecule & liquid database. Bioinformatics 28(5):752–753PubMedCrossRefGoogle Scholar
  60. 60.
    Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50(5):1055–1076CrossRefGoogle Scholar
  61. 61.
    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190CrossRefGoogle Scholar
  62. 62.
    Luzar A, Chandler D (1996) Hydrogen-bond kinetics in liquid water. Nature 379:55CrossRefGoogle Scholar
  63. 63.
    Luzar A (2000) Resolving the hydrogen bond dynamics conundrum. J Chem Phys 113(23):10663–10675CrossRefGoogle Scholar
  64. 64.
    van der Spoel D et al (2006) Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media. J Phys Chem B 110(9):4393–4398PubMedCrossRefGoogle Scholar
  65. 65.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539CrossRefGoogle Scholar
  66. 66.
    Pearson RG (1997) Chemical hardness. Wiley Online LibraryGoogle Scholar
  67. 67.
    Parr RG et al (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68(8):3801–3807CrossRefGoogle Scholar
  68. 68.
    Nalewajski RF (1993) The hardness based molecular charge sensitivities and their use in the theory of chemical reactivity. In: Sen KD (ed) Chemical hardness. Springer, Berlin, pp 115–186Google Scholar
  69. 69.
    Neshev N, Mineva TZ (1996) The role of interelectronic interaction in transition metal oxide catalysts. In: Russo N, Salahub DR (eds) MMetal-ligand interactions: structure and reactivity. Springer, Dordrecht, pp 361–405Google Scholar
  70. 70.
    Senet P (1996) Nonlinear electronic responses, Fukui functions and hardnesses as functionals of the ground-state electronic density. J Chem Phys 105(15):6471–6489CrossRefGoogle Scholar
  71. 71.
    Senet P (1997) Kohn-sham orbital formulation of the chemical electronic responses, including the hardness. J Chem Phys 107(7):2516–2524CrossRefGoogle Scholar
  72. 72.
    Chandrakumar KRS, Pal S (2002) A systematic study on the reactivity of Lewis acid−base complexes through the local hard−soft acid−base principle. J Phys Chem A 106(48):11775–11781CrossRefGoogle Scholar
  73. 73.
    Chattaraj PK, Roy DR (2007) Update 1 of: electrophilicity index. Chem Rev 107(9):PR46–PR74CrossRefGoogle Scholar
  74. 74.
    Mineva T, Heine T (2004) Efficient computation of density-functional orbitally resolved reactivity indices. J Phys Chem A 108(50):11086–11091CrossRefGoogle Scholar
  75. 75.
    Mineva T et al (1997) Density functional potential-energy hypersurface and reactivity indices in the isomerization of X3H+ (X = O, S, Se, Te). J Chem Soc Faraday Trans 93(18):3309–3312CrossRefGoogle Scholar
  76. 76.
    Mineva T, Sicilia E, Russo N (1998) Density-functional approach to hardness evaluation and its use in the study of the maximum hardness principle. J Am Chem Soc 120(35):9053–9058CrossRefGoogle Scholar
  77. 77.
    Mineva T et al (1999) Gas-phase properties and Fukui indices of sulfine (CH2SO). Potential energy surface and maximum hardness principle for its protonation process. A density functional study. Theor Chem Accounts 101(6):388–395CrossRefGoogle Scholar
  78. 78.
    Madjarova G et al (2005) Selectivity descriptors for the Michael addition reaction as obtained from density functional based approaches. J Phys Chem A 109(2):387–393PubMedCrossRefGoogle Scholar
  79. 79.
    Mineva T (2006) Selectivity study from the density functional local reactivity indices. J Mol Struct THEOCHEM 762(1):79–86CrossRefGoogle Scholar
  80. 80.
    Mineva T, Thomas H (2006) Orbital hardness tensors from hydrogen through xenon from Kohn–Sham perturbed orbitals. Int J Quantum Chem 106(6):1396–1405CrossRefGoogle Scholar
  81. 81.
    Ohno K (1967) Molecular orbital calculations of Φ electron systems. In: Löwdin PO (ed) Advances in quantum chemistry. Academic, New York, pp 239–322Google Scholar
  82. 82.
    Bjelkmar P et al (2010) Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 6(2):459–466PubMedCrossRefGoogle Scholar
  83. 83.
    Anisimov VM et al (2007) Polarizable empirical force field for the primary and secondary alcohol series based on the classical Drude model. J Chem Theory Comput 3(6):1927–1946PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Guàrdia E et al (2001) Comparison of different three-site interaction potentials for liquid acetonitrile. Mol Simul 26(4):287–306CrossRefGoogle Scholar
  85. 85.
    Soper AK, Phillips MG (1986) A new determination of the structure of water at 25°C. Chem Phys 107(1):47–60CrossRefGoogle Scholar
  86. 86.
    Jerie K et al (2005) Structure of aqueous solutions of acetonitrile investigated by acoustic and positron annihilation measurements. Acta Physica Polonica-Series A General Physics 107(5):826–831CrossRefGoogle Scholar
  87. 87.
    Xu H, Stern HA, Berne BJ (2002) Can water polarizability be ignored in hydrogen bond kinetics? J Phys Chem B 106(8):2054–2060CrossRefGoogle Scholar
  88. 88.
    Soper AK, Bruni F, Ricci MA (1997) Site–site pair correlation functions of water from 25 to 400 °C: revised analysis of new and old diffraction data. J Chem Phys 106(1):247–254CrossRefGoogle Scholar
  89. 89.
    Noskov SY, Lamoureux G, Roux B (2005) Molecular dynamics study of hydration in ethanol−water mixtures using a polarizable force field. J Phys Chem B 109(14):6705–6713PubMedCrossRefGoogle Scholar
  90. 90.
    Salamatova E et al (2017) Hydrogen bond and lifetime dynamics in diluted alcohols. Phys Chem Chem Phys 19(41):27960–27967PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Matériaux Avancés pour la Catalyse et la Santé, UMR 5253 CNRS/UM/ENSCMInstitut Charles Gerhardt de Montpellier (ICGM)Montpellier cedex 5France

Personalised recommendations