Optical properties of anatase TiO2: synergy between transition metal doping and oxygen vacancies

  • Julio César González-Torres
  • Luis A. Cipriano
  • Enrique Poulain
  • Víctor Domínguez-Soria
  • Raúl García-Cruz
  • Oscar Olvera-NeriaEmail author
Original Paper


Charge carriers (electrons and holes) are generated on the TiO2 using UV radiation; this excitation energy can be reduced by modifying the material electronic structure, for example, by doping or creating oxygen vacancies. Here, the electronic structure of a transition metal-doped anatase, bulk and surface, and their interaction with oxygen vacancies are studied using density functional theory. The visible light response of metal-doped TiO2 (101) is also determined. Transition metals generate intra-band gap states, which reduce the excitation energy but may also act as charge recombination sites. Dopants Fe, Co, and Ni remarkably enhance the visible light response due to the states in the middle of the gap. However, Co and Ni create heavier charge carriers. Our results show that Pd and Pt-doped TiO2 generate states near the valence and conduction band with a “clean” band gap (without states in the middle of the gap). Moreover, Pt-doped TiO2 maintains the charge mobility because it presents a small charge carriers mass. Hence, Pt-doped TiO2 represents the best alternative to activate TiO2 under visible light. The optical response of transition metal-doped TiO2 follows the order 3d > 4d > 5d. The oxygen vacancies reduce the response of metal-doped TiO2 to visible light because the unpaired electrons generated occupy the empty states of metal-doping.

Graphical Abstract

Density of states of TiO2 (101) surface doped with transition metals and oxygen vacancies


Anatase TiO2 Transition metal doping Oxygen vacancies DFT Optical response 



O. Olvera-Neria thanks CONACYT-México for financial support of the project CB-2011-01/166246. The authors are indebted to the Laboratory of Applied Mathematics and High-Performance Computing for the computing time granted in the ABACUS I supercomputer. JGT is grateful to CONACYT-México for the studentship granted to pursue his doctoral studies.

Supplementary material

894_2018_3816_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1241 kb)


  1. 1.
    Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5):53–229Google Scholar
  2. 2.
    Rauf MA, Ashraf SS (2009) Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 151(1):10–18Google Scholar
  3. 3.
    Czoska AM, Livraghi S, Chiesa M, Giamello E, Agnoli S, Granozzi G, Finazzi E, Valentin CD, Pacchioni G (2008) The nature of defects in fluorine-doped TiO2. J Phys Chem C 112(24):8951–8956Google Scholar
  4. 4.
    Finazzi E, Di Valentin C, Selloni A, Pacchioni G (2007) First principles study of nitrogen doping at the anatase TiO2(101) surface. J Phys Chem C 111(26):9275–9282Google Scholar
  5. 5.
    Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC (2015) Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C 25:1–29Google Scholar
  6. 6.
    Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277(5698):637–638Google Scholar
  7. 7.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38Google Scholar
  8. 8.
    Gratzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344Google Scholar
  9. 9.
    Atanelov J, Gruber C, Mohn P (2015) The electronic and magnetic structure of p-element (C,N) doped rutile-TiO2; a hybrid DFT study. Comput Mater Sci 98:42–50Google Scholar
  10. 10.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light Photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271Google Scholar
  11. 11.
    Dvoranová D, Brezová V, Mazúr M, Malati MA (2002) Investigations of metal-doped titanium dioxide photocatalysts. Appl Catal B 37(2):91–105Google Scholar
  12. 12.
    Tahiri H, Ichou YA, Herrmann J-M (1998) Photocatalytic degradation of chlorobenzoic isomers in aqueous suspensions of neat and modified titania. J Photochem Photobiol A 114(3):219–226Google Scholar
  13. 13.
    Errico LA, Rentería M, Weissmann M (2005) Theoretical study of magnetism in transition-metal-doped TiO2 and TiO2-d. Phys Rev B 72(18):184425Google Scholar
  14. 14.
    Park MS, Kwon SK, Min BI (2002) Electronic structures of doped anatase TiO2: Ti1-xMxO2 (M = Co, Mn, Fe, Ni). Phys Rev B 65(16):161201Google Scholar
  15. 15.
    Li XZ, Li FB (2001) Study of au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ Sci Technol 35(11):2381–2387Google Scholar
  16. 16.
    Tong T, Zhang J, Tian B, Chen F, He D (2008) Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J Hazard Mater 155(3):572–579Google Scholar
  17. 17.
    Song K, Han X, Shao G (2013) Electronic properties of rutile TiO2 doped with 4d transition metals: first-principles study. J Alloys Compd 551:118–124Google Scholar
  18. 18.
    Chen QL, Li B, Zheng G, He KH, Zheng AS (2011) First-principles calculations on electronic structures of Fe-vacancy-codoped TiO2 anatase (101) surface. Physica B 406(20):3841–3846Google Scholar
  19. 19.
    Lee H, Shin M, Lee M, Hwang YJ (2015) Photo-oxidation activities on Pd-doped TiO2 nanoparticles: critical PdO formation effect. Appl Catal B 165:20–26Google Scholar
  20. 20.
    Mukri BD, Waghmare UV, Hegde MS (2013) Platinum ion-doped TiO2: high catalytic activity of Pt2+ with oxide ion vacancy in Ti4+ 1–xPt2+ xO2–x compared to Pt4+ without oxide ion vacancy in Ti4+ 1–xPt4+ xO2. Chem Mater 25(19):3822–3833Google Scholar
  21. 21.
    Camarillo R, Tostón S, Martínez F, Jiménez C, Rincón J (2017) Enhancing the photocatalytic reduction of CO2 through engineering of catalysts with high pressure technology: Pd/TiO2 photocatalysts. J Supercrit Fluids 123:18–27Google Scholar
  22. 22.
    Gomes FJ, Lopes A, Bednarczyk K, Gmurek M, Stelmachowski M, Zaleska-Medynska A, Quinta-Ferreira EM, Costa R, Quinta-Ferreira MR, Martins CR (2018) Effect of noble metals (Ag, Pd, Pt) loading over the efficiency of TiO2 during photocatalytic ozonation on the toxicity of parabens. Chem Eng 2:1Google Scholar
  23. 23.
    Wang X, Rui Z, Zeng Y, Ji H, Du Z, Rao Q (2017) Synergetic effect of oxygen vacancy and Pd site on the interaction between Pd/Anatase TiO2(101) and formaldehyde: a density functional theory study. Catal Today 297:151–158Google Scholar
  24. 24.
    Chen P, Khetan A, Yang F, Migunov V, Weide P, Stürmer SP, Guo P, Kähler K, Xia W, Mayer J, Pitsch H, Simon U, Muhler M (2017) Experimental and theoretical understanding of nitrogen-doping-induced strong metal–support interactions in Pd/TiO2 catalysts for nitrobenzene hydrogenation. ACS Catal 7(2):1197–1206Google Scholar
  25. 25.
    Panta R, Ruangpornvisuti V (2017) Adsorption of hydrogen molecule on noble metal doped on oxygen-vacancy defect of anatase TiO2(101) surface: periodic DFT study. Int J Hydrog Energy 42(30):19106–19113Google Scholar
  26. 26.
    Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened coulomb potential. J Chem Phys 118(18):8207–8215Google Scholar
  27. 27.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871Google Scholar
  28. 28.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev. 140(4A):A1133–A1138Google Scholar
  29. 29.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868Google Scholar
  30. 30.
    Becke AD (1986) Density functional calculations of molecular bond energies. J Chem Phys 84(8):4524–4529Google Scholar
  31. 31.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100Google Scholar
  32. 32.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33(12):8822–8824Google Scholar
  33. 33.
    Perdew JP, Yue W (1986) Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys Rev B 33(12):8800–8802Google Scholar
  34. 34.
    Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50Google Scholar
  35. 35.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186Google Scholar
  36. 36.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57(3):1505–1509Google Scholar
  37. 37.
    Calzado CJ, Hernández NC, Sanz JF (2008) Effect of on-site coulomb repulsion term U on the band-gap states of the reduced rutile (110) TiO2 surface. Phys Rev B 77(4):045118Google Scholar
  38. 38.
    Portillo-Vélez NS, Olvera-Neria O, Hernández-Pérez I, Rubio-Ponce A (2013) Localized electronic states induced by oxygen vacancies on anatase TiO2 (101) surface. Surf Sci 616:115–119Google Scholar
  39. 39.
    Morgan BJ, Watson GW (2007) A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface. Surf Sci 601(21):5034–5041Google Scholar
  40. 40.
    González-Torres JC, Poulain E, Domínguez-Soria V, García-Cruz R, Olvera-Neria O (2018) C-, N-, S-, and F-doped anatase TiO2 (101) with oxygen vacancies: photocatalysts active in the visible region. Int J Photoenergy 2018:12Google Scholar
  41. 41.
    Dovesi R, Orlando R, Erba A, Zicovich-Wilson Claudio M, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco P, Noël Y, Causà M, Rérat M, Kirtman B (2014) CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int J Quantum Chem 114(19):1287–1317Google Scholar
  42. 42.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979Google Scholar
  43. 43.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775Google Scholar
  44. 44.
    Lazzeri M, Vittadini A, Selloni A (2002) Erratum: structure and energetics of stoichiometric TiO2 anatase surfaces [Phys. Rev. B 63, 155409 (2001)]. Phys Rev B 65(11):119901Google Scholar
  45. 45.
    Lazzeri M, Vittadini A, Selloni A (2001) Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys Rev B 63(15):155409Google Scholar
  46. 46.
    Siddhapara KS, Shah DV (2014) Study of photocatalytic activity and properties of transition metal ions doped nanocrystalline TiO2 prepared by sol-gel method. Adv Mater Sci Eng 2014:4Google Scholar
  47. 47.
    Le Bahers T, Rérat M, Sautet P (2014) Semiconductors used in photovoltaic and photocatalytic devices: assessing fundamental properties from DFT. J Phys Chem C 118(12):5997–6008Google Scholar
  48. 48.
    Madelung O (2004) Semiconductors: data handbook. 3rd edn. Springer, New YorkGoogle Scholar
  49. 49.
    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F (2006) Linear optical properties in the projector-augmented wave methodology. Phys Rev B 73(4):045112Google Scholar
  50. 50.
    Wang V (2014) VASPKIT, postprocessing tool for VASP code.
  51. 51.
    Takeuchi M, Anpo M (2010) Development of well-defined visible light-responsive TiO2 thin film photocatalysts by applying a RF-magnetron sputtering deposition method. In: Anpo M, Kamat PV (eds) Environmentally benign photocatalysts: applications of titanium oxide-based materials. Springer New York, pp 301–317. Google Scholar
  52. 52.
    Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767Google Scholar
  53. 53.
    Haowei P, Jingbo L, Shu-Shen L, Jian-Bai X (2008) First-principles study of the electronic structures and magnetic properties of 3d transition metal-doped anatase TiO2. J Phys Condens Matter 20(12):125207Google Scholar
  54. 54.
    Jiang P, Xiang W, Kuang J, Liu W, Cao W (2015) Effect of cobalt doping on the electronic, optical and photocatalytic properties of TiO2. Solid State Sci 46:27–32Google Scholar
  55. 55.
    Zhou P, Yu J, Wang Y (2013) The new understanding on photocatalytic mechanism of visible-light response NS codoped anatase TiO2 by first-principles. Appl Catal B 142-143:45–53Google Scholar
  56. 56.
    Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. PCCP 16(38):20382–20386Google Scholar
  57. 57.
    Pacchioni G (2003) Oxygen vacancy: the invisible agent on oxide surfaces. ChemPhysChem 4(10):1041–1047Google Scholar
  58. 58.
    Iijima K, Goto M, Enomoto S, Kunugita H, Ema K, Tsukamoto M, Ichikawa N, Sakama H (2008) Influence of oxygen vacancies on optical properties of anatase TiO2 thin films. J Lumin 128(5):911–913Google Scholar
  59. 59.
    Chandana R, Mohanty P, Pandey AC, Mishra NC (2009) Oxygen vacancy induced structural phase transformation in TiO2 nanoparticles. J Phys D Appl Phys 42(20):205101Google Scholar
  60. 60.
    Moradi V, Jun MBG, Blackburn A, Herring RA (2018) Significant improvement in visible light photocatalytic activity of Fe doped TiO2 using an acid treatment process. Appl Surf Sci 427:791–799Google Scholar
  61. 61.
    Xu C, Zhang Y, Chen J, Lin J, Zhang X, Wang Z, Zhou J (2017) Enhanced mechanism of the photo-thermochemical cycle based on effective Fe-doping TiO2 films and DFT calculations. Appl Catal B 204:324–334Google Scholar
  62. 62.
    Guo M, Du J (2012) First-principles study of electronic structures and optical properties of cu, ag, and au-doped anatase TiO2. Physica B 407(6):1003–1007Google Scholar
  63. 63.
    Li J, Wei S-H, Li S-S, Xia J-B (2006) Design of shallow acceptors in ZnO: first-principles band-structure calculations. Phys Rev B 74(8):081201Google Scholar
  64. 64.
    Weng H, Dong J, Fukumura T, Kawasaki M, Kawazoe Y (2006) First principles investigation of the magnetic circular dichroism spectra of co-doped anatase and rutile TiO2. Phys Rev B 73(12):121201Google Scholar
  65. 65.
    Tian L (2006) DFT description on electronic structure and optical absorption properties of anionic S-doped anatase TiO2. J Phys Chem B 110(36):17866–17871PubMedPubMedCentralGoogle Scholar
  66. 66.
    Ganesh I, Gupta AK, Kumar PP, Chandra Sekhar PS, Radha K, Padmanabham G, Sundararajan G (2012) Preparation and characterization of co-doped TiO2 materials for solar light induced current and photocatalytic applications. Mater Chem Phys 135(1):220–234Google Scholar
  67. 67.
    Wang Y, Zhang L, Li S, Jena P (2009) Polyol-mediated synthesis of ultrafine TiO2 nanocrystals and tailored physiochemical properties by Ni doping. J Phys Chem C 113(21):9210–9217Google Scholar
  68. 68.
    Toprek D, Koteski V, Belošević-Čavor J, Ivanovski V, Umićević A (2017) Ab initio study of electronic and optical properties of Fe doped anatase TiO2 (1 0 1) surface. Comput Theor Chem 1120:17–23Google Scholar
  69. 69.
    Wen L, Liu B, Zhao X, Nakata K, Murakami T, Fujishima A (2012) Synthesis, characterization, and photocatalysis of Fe-doped TiO2: a combined experimental and theoretical study. Int J Photoenergy 2012:10Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Área de Física Atómica Molecular Aplicada (FAMA), CBIUniversidad Autónoma Metropolitana-AzcapotzalcoCiudad de MéxicoMexico
  2. 2.Área de Química Aplicada, CBIUniversidad Autónoma Metropolitana-AzcapotzalcoCiudad de MéxicoMexico

Personalised recommendations