Characterization of peroxo reaction intermediates in the water oxidation process on hematite surfaces

  • Lodvert Tchibota Poaty
  • Kanchan Ulman
  • Nicola Seriani
  • Bernard M’Passi-Mabiala
  • Ralph Gebauer
Original Paper
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday


We use density functional theory-based calculations to study structural, electronic, and magnetic properties of two key reaction intermediates on a hematite, \(\alpha \)-Fe2O3, photoanode during the solar-driven water splitting reaction. Both intermediates contain an oxygen atom bonded to a surface iron atom. In one case, the adsorbed oxygen also forms a peroxo bond with a lattice oxygen from hematite; in the second case no such bond is formed. Both configurations are energetically equivalent and are related to the overpotential-determining step in the oxygen evolution reaction. The calculated reaction path for the breaking of the peroxo bond shows a barrier of about 0.86 eV for the transformation between the two intermediates. We explain this high barrier with the drastically different electronic and magnetic structure, which we also analyze using maximally localized Wannier functions. Photo-generated electron holes are shown to localize preferentially close to the reaction center at the surface in both configurations. In the case of the oxo species, this localization favors subsequent electron transfer steps during the oxygen evolution cycle. In the case of the peroxo configuration, this fact together with the high barrier for breaking the oxygen–oxygen bond indicates a possible loss mechanism due to hole trapping.

Graphical Abstract

Calculated spin density at a hematite surface with peroxo intermediate


Hematite Water splitting Density functional theory 



L. Tchibota Poaty is greatful to the OFID Postgraduate Fellowship Programme at ICTP and to the ICTP-IAEA Sandwich Training Educational Programme under which this work has been performed.


  1. 1.
    Grave DA, Yatom N, Ellis DS, Toroker MC, Rothschild A (2018) The ”Rust” Challenge: On the Correlations between Electronic Structure, Excited State Dynamics, and Photoelectrochemical Performance of Hematite Photoanodes for Solar Water Splitting. Advanced Materials, pp 1706577Google Scholar
  2. 2.
    Sivula K, Formal FL, Grȧtzel M (2011) Solar water splitting: progress using hematite (α-Fe(2) O(3)) photoelectrodes. ChemSusChem 4(4):432–49CrossRefGoogle Scholar
  3. 3.
    Barroso M, Pendlebury SR, Cowan AJ, Durrant JR (2013) Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem Sci 4(7):2724CrossRefGoogle Scholar
  4. 4.
    Formal FL, Pastor E, Tilley SD, Mesa CA, Pendlebury SR, Grȧtzel M, Durrant JR (2015) Rate Law Analysis of Water Oxidation on a Hematite Surface. Journal of the American Chemical SocietyGoogle Scholar
  5. 5.
    Zhou Z, Liu J, Long R, Li L, Guo L, Prezhdo OV (2017) Control of charge carriers trapping and relaxation in hematite by oxygen vacancy charge: ab initio non-adiabatic molecular dynamics. J Am Chem Soc 139 (19):6707–6717CrossRefGoogle Scholar
  6. 6.
    Zhang M, Luo W, Li Z, Yu T, Zou Z (2010) Improved photoelectrochemical responses of Si and Ti codoped \(\alpha \)-Fe2O3 photoanode films. Appl Phys Lett 97(4):042105CrossRefGoogle Scholar
  7. 7.
    Meng XY, Qin GW, Li S, Wen XH, Ren YP, Pei WL, Zuo L (2011) Enhanced photoelectrochemical activity for Cu and Ti-doped hematite: the first principles calculations. Appl Phys Lett 98(11):112104CrossRefGoogle Scholar
  8. 8.
    Liao P, Keith JA, Carter EA (2012) Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis. J Am Chem Soc 134(32):13296–309CrossRefGoogle Scholar
  9. 9.
    Liao P, Carter EA (2012) Hole transport in pure and doped hematite. J Appl Phys 112(1):013701CrossRefGoogle Scholar
  10. 10.
    Lin Y, Sa Z, Sheehan SW, Wang D (2011) Nanonet-based hematite heteronanostructures for efficient solar water splitting. J Am Chem Soc 133(8):2398–401CrossRefGoogle Scholar
  11. 11.
    Malara F, Fabbri F, Marelli M, Naldoni A (2016) Controlling the Surface Energetics and Kinetics of Hematite Photoanodes Through Few Atomic Layers of NiO x. ACS Catalysis, pp 3619–3628Google Scholar
  12. 12.
    Kiejna A, Pabisiak T (2012) Surface properties of clean and Au or Pd covered hematite (α-Fe(2)O(3)) (0001). J Phys Condens Matter: Instit Phys J 24(9):095003CrossRefGoogle Scholar
  13. 13.
    Seriani N (2017) Ab initio simulations of water splitting on hematite. J Phys: Condens Matter 29(46):463002Google Scholar
  14. 14.
    Trainor TP, Chaka AM, Eng PJ, Newville M, Waychunas GA, Catalano JG, Brown GE (2004) Structure and reactivity of the hydrated hematite (0001) surface. Surf Sci 573(2):204–224CrossRefGoogle Scholar
  15. 15.
    Hellman A, Pala RGS (2011) First-principles study of photoinduced water-splitting on Fe2O3. J Phys Chem C 115(26):12901–12907CrossRefGoogle Scholar
  16. 16.
    Nguyen M-T, Seriani N, Piccinin S, Gebauer R (2014) Photo-driven oxidation of water on \(\alpha \)-Fe2O3 surfaces: an ab initio study. J Chem Phys 140(6):064703CrossRefGoogle Scholar
  17. 17.
    Ulman K, Nguyen M-T, Seriani N, Piccinin S, Gebauer R (2017) A unified picture of water oxidation on bare and gallium oxide-covered hematite from density functional theory. ACS Catal 7(3):1793–1804CrossRefGoogle Scholar
  18. 18.
    Nguyen M-T, Seriani N, Gebauer R (2013) Water adsorption and dissociation on \(\alpha \)-Fe2O3(0001): PBE+U calculations. J Chem Phys 138(19):194709CrossRefGoogle Scholar
  19. 19.
    Nguyen M-T, Gebauer R (2014) Graphene supported on hematite surfaces a density functional study. J Phys Chem C 118(16):8455–8461CrossRefGoogle Scholar
  20. 20.
    Nguyen M-T, Seriani N, Gebauer R (2014) Defective \(\alpha \)-Fe2 O3 (0001): an ab initio study. Chemphyschem: Eur J Chem Phys Phys Chem 15(14):2930–5CrossRefGoogle Scholar
  21. 21.
    Nguyen M-T, Piccinin S, Seriani N, Gebauer R (2015) Photo-oxidation Of water on defective hematite(0001). ACS Catal 5(2):715–721CrossRefGoogle Scholar
  22. 22.
    Nguyen M-T, Camellone MF, Gebauer R (2015) On the electronic, structural, and thermodynamic properties of Au supported on \(\alpha \)-Fe2O3 surfaces and their interaction with CO. J Chem Phys 143(3):034704CrossRefGoogle Scholar
  23. 23.
    Nguyen M-T, Seriani N, Gebauer R (2015) Nitrogen electrochemically reduced to ammonia with hematite: density functional insights. Phys Chem Chem Phys: PCCP 17(22):14317–22CrossRefGoogle Scholar
  24. 24.
    Ulman K, Nguyen M-T, Seriani N, Gebauer R (2016) Passivation of surface states of α-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: a density functional theory studyGoogle Scholar
  25. 25.
    Nakamura R, Nakato Y (2004) Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J Am Chem Soc 126(4):1290–8CrossRefGoogle Scholar
  26. 26.
    Zhang M, de Respinis M, Frei H (2014) Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat Chem 6(4):362–367Google Scholar
  27. 27.
    Zandi O, Hamann TW (2016) Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat Chem 8(8):778–783CrossRefGoogle Scholar
  28. 28.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871CrossRefGoogle Scholar
  29. 29.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138CrossRefGoogle Scholar
  30. 30.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter: Inst Phys J 21(39):395502Google Scholar
  31. 31.
    Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio RA, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H-Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen H-V, Otero-de-la Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys: Condens Matter 29(46):465901Google Scholar
  32. 32.
    Mostofi AA, Yates JR, Pizzi G, Lee Y-S, Souza I, Vanderbilt D, Marzari N (2014) An updated version of Wannier90. A tool for obtaining maximally-localised Wannier functions. Comput Phys Commun 185(8):2309–2310CrossRefGoogle Scholar
  33. 33.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  34. 34.
    Cococcioni M, de Gironcoli S (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys Rev B 71(3):035105Google Scholar
  35. 35.
    Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44(3):943–954CrossRefGoogle Scholar
  36. 36.
    Ansari N, Ulman K, Camellone MF, Seriani N, Gebauer R, Piccinin S (2017) Hole localization in Fe2O3 from density functional theory and wave-function-based methods. Phys Rev Mater 1(3):035404CrossRefGoogle Scholar
  37. 37.
    Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895CrossRefGoogle Scholar
  38. 38.
    Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904CrossRefGoogle Scholar
  39. 39.
    Marzari N, Vanderbilt D (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B 56(20):12847–12865CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lodvert Tchibota Poaty
    • 1
    • 2
  • Kanchan Ulman
    • 1
  • Nicola Seriani
    • 1
  • Bernard M’Passi-Mabiala
    • 2
    • 3
  • Ralph Gebauer
    • 1
  1. 1.The Abdus Salam International Centre for Theoretical Physics (ICTP)TriesteItaly
  2. 2.Groupe de Simulations numériques en Magnétisme et CatalyseUniversité Marien Ngouabi, Faculté des Sciences et TechniquesBrazzavilleCongo
  3. 3.Unité de Recherche en Nanomatériaux et NanotechnologiesInstitut National de Recherche en Sciences Exactes et Naturelles (IRSEN)BrazzavilleCongo

Personalised recommendations