Towards a comprehensive understanding of the Si(100)-2×1 surface termination through hydrogen passivation using methylamine and methanol: a theoretical approach

  • Tanay Debnath
  • Tamalika Ash
  • Subhendu Sarkar
  • Abhijit Kr. Das
Original Paper
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday


Using density functional theory, we explored the termination process of Si (100)-2 × 1 reconstructed surface mechanistically through the dehydrogenation of small molecules, considering methyl amine and methanol as terminating reagents. At first, both the terminating reagents form two types of adduct through adsorption on the Si (100)-2 × 1 surface, one in chemisorption mode and the other via physisorption, from which the dehydrogenation process is initiated. By analyzing the activation barriers, it was observed that termination of the Si-surface through the dehydrogenation is kinetically almost equally feasible using either reagent. We further examined in detail the mechanism for each termination process by analyzing geometrical parameters and natural population analysis charges. From bonding evaluation, it is evident that hydrogen abstraction from adsorbates on the Si-surface is asymmetric in nature, where one hydrogen is abstracted as hydride by the electrophilic surface Si and the other hydrogen is abstracted as proton by the neucleophilic surface Si. Moreover, it was also observed that hydride transfer from adsorbate to the Si-surface occurs first followed by proton transfer. Overall, our theoretical interpretation provides a mechanistic understanding of the Si (100)-2 × 1 reconstructed surface termination by amine and alcohol that will further motivate researchers to design different types of decorated semiconductor devices.

Graphical Abstract

Surface termination process of Si(100)-2×1 through formation of non-polar Si–H bonds via dehydrogenation of methylamine and methanol as terminating reagents


Si(100)-2 × 1 reconstructed surface Dehydrogenation Surface termination Potential energy surface Bonding evaluation 



T.D. and T.A. are thankful to Council of Scientific and Industrial Research (CSIR) and S.S. is thankful to the University Grants Commission (UGC) for providing them with research fellowships.

Supplementary material

894_2018_3809_MOESM1_ESM.docx (195 kb)
ESM 1 (DOCX 195 kb)


  1. 1.
    Bent SF (2002) Surf Sci 500:879–903CrossRefGoogle Scholar
  2. 2.
    Filler MA, Bent SF (2003) Prog Surf Sci 73:1–56CrossRefGoogle Scholar
  3. 3.
    Lu X, Lin MC (2002) Int Rev Phys Chem 21:137–184CrossRefGoogle Scholar
  4. 4.
    Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM (2000) Nature 405:665–668CrossRefGoogle Scholar
  5. 5.
    Loscutoff PW, Bent SF (2006) Annu Rev Phys Chem 57:467–495CrossRefGoogle Scholar
  6. 6.
    Peelle BR, Krauland EM, Wittrup KD, Belcher AM (2005) Langmuir 21:6929–6933CrossRefGoogle Scholar
  7. 7.
    Estephan E, Larroque C, Cuisinier FJG, Bálint Z, Gergely C (2008) J Phys Chem B 112:8799–8805CrossRefGoogle Scholar
  8. 8.
    Lopez A, Heller T, Bitzer T, Richardson NV (2002) Chem Phys 277:1–8CrossRefGoogle Scholar
  9. 9.
    Ardalan P, Davani N, Musgrave CB (2007) J Phys Chem C 111:3692–3699CrossRefGoogle Scholar
  10. 10.
    Hamers RJ, Hovis JS, Lee S, Liu H, Shan J (1997) J Phys Chem B 101:1489–1492CrossRefGoogle Scholar
  11. 11.
    Kasemo B (2002) Surf Sci 500:656–677CrossRefGoogle Scholar
  12. 12.
    Buriak JM (2002) Chem Rev 102:1271–1308CrossRefGoogle Scholar
  13. 13.
    Ulman A (1996) Chem Rev 96:1533–1554CrossRefGoogle Scholar
  14. 14.
    Maboudian R (1998) Surf Sci Rep 30:207–269CrossRefGoogle Scholar
  15. 15.
    Linford MR, Chidsey CED (1993) J Am Chem Soc 115:12631–12632CrossRefGoogle Scholar
  16. 16.
    Faber EJ, de Smet LCPM, Olthuis W, Zuilhof H, Sudhölter EJR, Bergveld P, van den Berg A (2005) ChemPhysChem 6:2153–2166CrossRefGoogle Scholar
  17. 17.
    Liu YJ, Yu HZ (2003) ChemPhysChem 4:335–342CrossRefGoogle Scholar
  18. 18.
    Scheibal ZR, Xu W, Audiffred JF, Henry JE, Flake JC (2008) Electrochem Solid-State Lett 11:K81–K84CrossRefGoogle Scholar
  19. 19.
    Kilian KA, Böcking T, Gaus K, Gal M, Gooding JJ (2007) Biomaterials 28:3055–3062CrossRefGoogle Scholar
  20. 20.
    Zhu XY, Houston JE (1999) Tribol Lett 7:87–90CrossRefGoogle Scholar
  21. 21.
    Liu Q, Hoffmann R (1995) J Am Chem Soc 117:4082–4092CrossRefGoogle Scholar
  22. 22.
    Konečný R, Doren DJ (1997) J Chem Phys 106:2426–2435CrossRefGoogle Scholar
  23. 23.
    Collin M, Joseph HH, Wang GT, Musgrave CB, Bent SF (2002) J Am Chem Soc 124:4027–4038CrossRefGoogle Scholar
  24. 24.
    Addamiano A, Klein PH (1984) J Cryst Growth 70:291–294CrossRefGoogle Scholar
  25. 25.
    Shibahara K, Nishino S, Matsunami H (1986) J Cryst Growth 78:538–544CrossRefGoogle Scholar
  26. 26.
    de Smet LCPM, Zuilhof H, Sudhölter EJR, Lie LH, Houlton A, Horrocks BR (2005) J Phys Chem B 109:12020–12031CrossRefGoogle Scholar
  27. 27.
    Sieval AB, Opitz R, Maas HPA, Schoeman MG, Meijer G, Vergeldt FJ, Zuilhof H, Sudhölter EJR (2000) Langmuir 16:10359–10368CrossRefGoogle Scholar
  28. 28.
    Qu YQ, Li J, Han KL (2004) J Phys Chem B 108:15103–15109CrossRefGoogle Scholar
  29. 29.
    Lee JY, Kim S (2001) Surf Sci 482–485:196–200CrossRefGoogle Scholar
  30. 30.
    Romero AH, Sbraccia C, Silvestrelli PL, Ancilotto F (2003) J Chem Phys 119:1085–1092CrossRefGoogle Scholar
  31. 31.
    Debnath T, Sen K, Ghosh D, Banu T, Das AK (2015) J Phys Chem A 119:4939–4952CrossRefGoogle Scholar
  32. 32.
    Cho J, Choi CH (2008) J Phys Chem C 112:6907–6913CrossRefGoogle Scholar
  33. 33.
    Zhang L, Carman AJ, Casey SM (2003) J Phys Chem B 107:8424–8432CrossRefGoogle Scholar
  34. 34.
    Zhou JG, Hagelberg F, Xiao C (2006) Phys Rev B 73:155307CrossRefGoogle Scholar
  35. 35.
    Lee JH, Cho JH (2007) Phys Rev B 76:125302CrossRefGoogle Scholar
  36. 36.
    Bae SS, Kim KJ, Lee HK, Lee H, Kang TH, Kim B, Kim S (2010) Langmuir 26:1019–1023CrossRefGoogle Scholar
  37. 37.
    Hahn JR, Jang SH, Jeong S (2010) J Phys Chem C 114:17761–17767CrossRefGoogle Scholar
  38. 38.
    Kato T, Kang SY, Xu X, Yamabe T (2001) J Phys Chem B 105:10340–10347CrossRefGoogle Scholar
  39. 39.
    Naitabdi A, Bournel F, Gallet JJ, Markovits A, Rochet F, Borensztein Y, Silly MG, Sirotti F (2012) J Phys Chem C 116:16473–16486CrossRefGoogle Scholar
  40. 40.
    Carman AJ, Zhang L, Liswood JL, Casey SM (2003) J Phys Chem B 107:5491–5502CrossRefGoogle Scholar
  41. 41.
    Cho J, Choi CH (2011) J Chem Phys 134:194701CrossRefGoogle Scholar
  42. 42.
    Davies BM, Craig JH (2003) Surf Interface Anal 35:1060–1064CrossRefGoogle Scholar
  43. 43.
    Wang Y, Hwang GS (2004) Chem Phys Lett 385:144–148CrossRefGoogle Scholar
  44. 44.
    Wang GT, Mui C, Tannaci JF, Filler MA, Musgrave CB, Bent SF (2003) J Phys Chem B 107:4982–4996CrossRefGoogle Scholar
  45. 45.
    Ferguson GA, Das U, Raghavachari K (2009) J Phys Chem C 113:10146–10150CrossRefGoogle Scholar
  46. 46.
    Ardalan P, Dupont G, Musgrave CB (2011) J Phys Chem C 115:7477–7486CrossRefGoogle Scholar
  47. 47.
    Konecny R, Doren DJ (1997) J Phys Chem B 101:10983–10985CrossRefGoogle Scholar
  48. 48.
    Sniatynsky R, Janesko BG, El-Mellouhi F, Brothers EN (2012) J Phys Chem C 116:26396–26404CrossRefGoogle Scholar
  49. 49.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al (2009) Gaussian 09, Revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
  50. 50.
    Zhao Y, Truhlar D (2006) J Chem Phys 125:194101–194118CrossRefGoogle Scholar
  51. 51.
    Zhao Y, Truhlar D (2008) Theor Chem Accounts 120:215–241CrossRefGoogle Scholar
  52. 52.
    Ferguson GA, Ramabhadran RO, Than CTL, Paradise RK, Raghavachari K (2014) J Phys Chem C 118:8379–8386CrossRefGoogle Scholar
  53. 53.
    Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161CrossRefGoogle Scholar
  54. 54.
    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tanay Debnath
    • 1
  • Tamalika Ash
    • 1
  • Subhendu Sarkar
    • 1
  • Abhijit Kr. Das
    • 1
  1. 1.School of Mathematical & Computational SciencesIndian Association for the Cultivation of ScienceKolkataIndia

Personalised recommendations