Advertisement

Journal of Molecular Modeling

, 24:230 | Cite as

Ligand-induced symmetry breaking and concomitant blueshift in the emission wavelength of an octahedral chromium complex

  • Manoj Majumder
  • Satadal Paul
  • Anirban Misra
Original Paper
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Abstract

The resulting distortion of the octahedral symmetry of the complex [CrIII(NH3)6]3+ upon replacing the axial ligands with halides (i.e., weaker ligands) affects the stability of the doublet state with respect to that of the quartet ground state. This substitution affects the doublet-to-quartet transition responsible for phosphorescence. The position of the halide with respect to ammonia in the spectrochemical series is a major influence on the emission wavelength of the complex. The close proximity of fluorine and ammonia in the spectrochemical series leads to a blueshift in the emission wavelength when fluoride ions are introduced into the complex, thus providing a rational approach to the design of blue-phosphorescent materials, which are desirable for OLEDs used in full-color displays.

Graphical abstract

Shifts in the phosphorescence emission wavelength of an octahedral Cr(III) complex caused by axial ligand substitution. Replacing the axial ligands leads to a change in the relative positions of the axial and equatorial ligands in the spectrochemical series, which in turn induces a redshift or a blueshift in the emission wavelength

Keywords

Blueshift Quartet Luminescence OLED TDDFT 

Notes

Acknowledgements

The Department of Science and Technology, India is gratefully acknowledged for its financial assistance. This work is dedicated to Professor P. K. Chattaraj on the occasion of his 60th birthday.

Supplementary material

894_2018_3768_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1271 kb)

References

  1. 1.
    Bergman SD, Kol M, Gut D, Sabatini C, Barbieri A, Barigelletti F (2005) Eilatin complexes of ruthenium and osmium. Synthesis, electrochemical behavior, and near-IR luminescence. Inorg Chem 44:7943–7950CrossRefPubMedGoogle Scholar
  2. 2.
    Draper SM, Gregg DJ, Schofield ER, Browne WR, Duati M, Vos JG, Passaniti P (2004) Complexed nitrogen heterosuperbenzene: the coordinating properties of a remarkable ligand. J Am Chem Soc 126:8694–8870Google Scholar
  3. 3.
    Wilson MH, Ledwaba PL, Field JS, McMillin DR (2005) Push-pull effects and emission from ternary complexes of platinum(II), substituted terpyridines, and the strong-field cyanide ion. Dalton Trans 16:2754–2759CrossRefGoogle Scholar
  4. 4.
    Siu PKM, Ma DL, Che CM (2005) Luminescent cyclometalated platinum(II) complexes with amino acid ligands for protein binding. Chem Commun 8:1025–1027Google Scholar
  5. 5.
    Ionkin AS, Marshall WJ, Wang Y (2005) Syntheses, structural characterization, and first electroluminescent properties of mono-cyclometalated platinum(II) complexes with greater than classical π–π stacking and Pt–Pt distances. Organometallics 24:619–627Google Scholar
  6. 6.
    Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154CrossRefGoogle Scholar
  7. 7.
    Yersin H (2008) Highly efficient OLEDs with phosphorescent materials. Wiley–VCH, WeinheimGoogle Scholar
  8. 8.
    Kafafi ZH (2005) Organic electroluminescence. CRC, Boca RatonGoogle Scholar
  9. 9.
    Shinar J, Savvateev V (2004) Introduction to organic light-emitting devices. In: Shinar J (ed) Organic light-emitting devices. Springer, Heidelberg, pp 1–4Google Scholar
  10. 10.
    Chou PT, Chi Y (2007) Phosphorescent dyes for organic light-emitting diodes. Chem Eur J 13:380–395CrossRefPubMedGoogle Scholar
  11. 11.
    Borek C, Hanson K, Djurovich PI, Thompson ME, Aznavour K, Bau R, Sun Y, Forrest SR, Brooks J, Michalski L, Brown J (2007) Highly efficient, near-infrared electrophosphorescence from a Pt–metalloporphyrin complex. Angew Chem Int Ed 46:1109–1112Google Scholar
  12. 12.
    Evans RC, Douglas PC, Winscom J (2006) Coordination complexes exhibiting room-temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes. Coord Chem Rev 250:2093–2126CrossRefGoogle Scholar
  13. 13.
    Williams JAG, Develay S, Rochester DL, Murphy L (2008) Optimising the luminescence of platinum(II) complexes and their application in organic light emitting devices (OLEDs). Coord Chem Rev 252:2596–2611CrossRefGoogle Scholar
  14. 14.
    Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv Mater 23:926–952Google Scholar
  15. 15.
    Su HC, Chen HF, Fang FC, Liu CC, Wu CC, Wong KT, Liu YH, Peng SM (2008) Solid-state white light-emitting electrochemical cells using iridium-based cationic transition metal complexes. J Am Chem Soc 130:3413–3419CrossRefPubMedGoogle Scholar
  16. 16.
    Bolink HJ, Coronado E, Costa RD, Lardies N, Orti E (2008) Near-quantitative internal quantum efficiency in a light-emitting electrochemical cell. Inorg Chem 47:9149–9151CrossRefPubMedGoogle Scholar
  17. 17.
    Slinker J, Bernards D, Houston PL, Abruña HD, Bernhard S, Malliaras GG (2003) Solid-state electroluminescent devices based on transition metal complexes. Chem Commun 2392–2399Google Scholar
  18. 18.
    Kapturkiewicz A (2010) Electrochemiluminescent systems as devices and sensors. In: Ceroni P, Credi A, Venturi M (eds) Electrochemistry of functional supramolecular systems. Wiley, Hoboken, p 477Google Scholar
  19. 19.
    Polo ASP, Itokazu MK, Iha NYM (2004) Metal complex sensitizers in dye-sensitized solar cells. Coord Chem Rev 248:1343–1361CrossRefGoogle Scholar
  20. 20.
    Robertson N (2006) Optimizing dyes for dye-sensitized solar cells. Angew Chem Int Ed 45:2338–2345CrossRefGoogle Scholar
  21. 21.
    Wong WY, Wang XZ, He Z, Djurišsić AB, Yip CT, Cheung KY, Wang H, CSK M, Chan WK (2007) Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Nat Mater 6:521–527CrossRefPubMedGoogle Scholar
  22. 22.
    Gratzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851CrossRefPubMedGoogle Scholar
  23. 23.
    Lo KKW, Louie MW, Zhang KY (2010) Design of luminescent iridium(III) and rhenium(I) polypyridine complexes as in vitro and in vivo ion, molecular and biological probes. Coord Chem Rev 254:2603–2622CrossRefGoogle Scholar
  24. 24.
    O’Neil EJ, Smith BD (2006) Anion recognition using dimetallic coordination complexes. Coord Chem Rev 250:3068–3080CrossRefGoogle Scholar
  25. 25.
    Keefe MH, Benkstein KD, Hupp JT (2000) Luminescent sensor molecules based on coordinated metals: a review of recent developments. Coord Chem Rev 205:201–228CrossRefGoogle Scholar
  26. 26.
    Zhao Q, Li F, Huang C (2010) Phosphorescent chemosensors based on heavy-metal complexes. Chem Soc Rev 39:3007–3030CrossRefPubMedGoogle Scholar
  27. 27.
    Fernandez-Moreira V, Thorp-Greenwood FL, Coogan MP (2010) Application of d 6 transition metal complexes in fluorescence cell imaging. Chem Commun 46:186–202Google Scholar
  28. 28.
    Botchway SW, Charnley M, Haycock JW, Parker AW, Rochester DL, Weinstein JA, Williams JAG (2008) Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes. Proc Natl Acad Sci USA 105:16071Google Scholar
  29. 29.
    Stephenson KA, Banerjee SR, Besanger T, Sogbein OO, Levadala MK, McFarlane N, Lemon JA, Boreham DR, Maresca KP, Brennan JD, Babich JW, Zubieta J, Valliant JF (2004) Bridging the gap between in vitro and in vivo imaging: isostructural Re and 99mTc complexes for correlating fluorescence and radioimaging studies. J Am Chem Soc 126:8598–8599Google Scholar
  30. 30.
    Yu M, Zhao Q, Shi L, Li F, Zhou Z, Yang H, Yi T, Huang C (2008) Cationic iridium(III) complexes for phosphorescence staining in the cytoplasm of living cells. Chem Commun 2115–2117Google Scholar
  31. 31.
    Kalyanasundaram K (1982) Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord Chem Rev 46:159–244CrossRefGoogle Scholar
  32. 32.
    Zeitler K (2009) Photoredox catalysis with visible light. Angew Chem Int Ed 48:9785–9789CrossRefGoogle Scholar
  33. 33.
    Hoffmann N (2008) Photochemical reactions as key steps in organic synthesis. Chem Rev 108:1052–1103CrossRefPubMedGoogle Scholar
  34. 34.
    Losse S, Vos JG, Rau S (2010) Catalytic hydrogen production at cobalt centres. Coord Chem Rev 254:2492–2504CrossRefGoogle Scholar
  35. 35.
    Hofbeck T, Yersin H (2010) The triplet state of fac-Ir(ppy)3. Inorg Chem 49:9290–9299CrossRefPubMedGoogle Scholar
  36. 36.
    Baldo MA, Forrest SR (2000) Transient analysis of organic electrophosphorescence: I. Transient analysis of triplet energy transfer. Phys Rev B 62:10958CrossRefGoogle Scholar
  37. 37.
    Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl Phys Lett 75:4–6CrossRefGoogle Scholar
  38. 38.
    Stufkens DJ, Vleck A (1998) Ligand-dependent excited state behaviour of Re(I) and Ru(II) carbonyl–diimine complexes. Coord Chem Rev 177:127–179Google Scholar
  39. 39.
    Sajoto T, Djurovich PI, Tamayo AB, Oxgaard J, Goddard III WA, Thompson ME (2009) Temperature dependence of blue phosphorescent cyclometalated Ir(III) complexes. J Am Chem Soc 131:9813–9822Google Scholar
  40. 40.
    Goushi K, Kawamura Y, Sasabe H, Adachi C (2004) Unusual phosphorescence characteristics of Ir(ppy)3 in a solid matrix at low temperatures. Jpn J Appl Phys 43:L937Google Scholar
  41. 41.
    Islam A, Ikeda N, Nozaki K, Okamoto Y, Gholamkhass B, Yoshimura A, Ohno T (1998) Non-radiative processes of excited CT states of Ru(II) and Pt(II) compounds and excited d-d states of Rh(III) compounds in the solid state and at higher temperatures. Coord Chem Rev 171:355–363CrossRefGoogle Scholar
  42. 42.
    Barigelletti F, Sandrini D, Maestri M, Balzani V, von Zelewsky A, Chassot L, Jolliet P, Maeder U (1988) Temperature dependence of the luminescence of cyclometalated palladium(II), rhodium(III), platinum(II), and platinum(IV) complexes. Inorg Chem 27:3644–3647CrossRefGoogle Scholar
  43. 43.
    Meyer TJ (1986) Photochemistry of metal coordination complexes: metal to ligand charge transfer excited states. Pure Appl Chem 58:1193–1206CrossRefGoogle Scholar
  44. 44.
    van Houten J, Watts RJ (1978) Photochemistry of tris(2,2′-bipyridyl)ruthenium(II) in aqueous solutions. Inorg Chem 17:3381–3385CrossRefGoogle Scholar
  45. 45.
    Caspar JV, Meyer TJ (1983) Photochemistry of tris(2,2′-bipyridine)ruthenium(II) ion (Ru(bpy)3 2+). Solvent effects. J Am Chem Soc 105:5583–5590CrossRefGoogle Scholar
  46. 46.
    Reineke S, Walzer K, Leo K (2007) Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Phys Rev B 75:125328CrossRefGoogle Scholar
  47. 47.
    Giebink NC, Forrest SR (2008) Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes. Phys Rev B 77:235215CrossRefGoogle Scholar
  48. 48.
    Reineke S, Schwartz G, Walzer K, Leo K (2007) Reduced efficiency roll-off in phosphorescent organic light emitting diodes by suppression of triplet–triplet annihilation. Appl Phys Lett 91:123508Google Scholar
  49. 49.
    Baldo MA, Adachi C, Forrest SR (2000) Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet–triplet annihilation. Phys Rev B 62:10967Google Scholar
  50. 50.
    Czerwieniec R, Yu J, Yersin H (2011) Blue-light emission of Cu(I) complexes and singlet harvesting. Inorg Chem 50:8293–8301Google Scholar
  51. 51.
    Hamada Y, Sano T, Fujii H, Nishio Y, Takahashi H, Shibata K (1996) White-light-emitting material for organic electroluminescent devices. Jpn J Appl Phys 35:L1339CrossRefGoogle Scholar
  52. 52.
    Schlafer HL, Gausmann H, Witzke H (1967) Correlation between the luminescence behavior of octahedral chromium(III) complexes and the ligand-field strength. J Chem Phys 46:1423Google Scholar
  53. 53.
    DeRosa F, Bu X, Pohaku K, Ford PC (2005) Synthesis and luminescence properties of Cr(III) complexes with cyclam-type ligands having pendant chromophores, trans-[Cr(L)Cl2]Cl. Inorg Chem 44:4166–4174Google Scholar
  54. 54.
    Kirk AD, Porter GB (1980) Luminescence of chromium(III) complexes. J Phys Chem 84:887–891CrossRefGoogle Scholar
  55. 55.
    Perdew JP, Ziesche P, Eschrig H (1991) Electronic structure of solids. Akademia, Berlin, p 11Google Scholar
  56. 56.
    Barakat KA, Cundari TR, Omary MA (2003) Jahn–Teller distortion in the phosphorescent excited state of three-coordinate Au(I) phosphine complexes. J Am Chem Soc 125:14228–14229Google Scholar
  57. 57.
    Nozaki K (2006) Theoretical studies on photophysical properties and mechanism of phosphorescence in [fac-Ir(2-phenylpyridine)3]. J Chin Chem Soc 53:101–112Google Scholar
  58. 58.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270Google Scholar
  59. 59.
    Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284Google Scholar
  60. 60.
    Casida MK, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439CrossRefGoogle Scholar
  61. 61.
    Matsuzawa NN, Ishitani A, Uda T (2001) Time-dependent density functional theory calculations of photoabsorption spectra in the vacuum ultraviolet region. J Phys Chem A 105:4953–4962Google Scholar
  62. 62.
    Li XN, Wu ZJ, Liu XJ, Zhang HJ (2009) Theoretical studies on electronic structures, spectra and charge transporting properties of a series of Pt(CΛN)2 complexes. Synth Met 159:1090–1098Google Scholar
  63. 63.
    Li XN, Wu ZJ, Liu XJ, Zhang H (2010) Comparative study of electronic structure and optical properties of a series of Pt(II) complexes containing different electron-donating and -withdrawing groups: a DFT study. J Phys Org Chem 23:181–189Google Scholar
  64. 64.
    Adamo C, Barone V (2000) Inexpensive and accurate predictions of optical excitations in transition-metal complexes: the TDDFT/PBE0 route. Theor Chem Acc 105:169Google Scholar
  65. 65.
    Frisch MJ et al (2009) Gaussian 09, revision B.01, Gaussian Inc., WallingfordGoogle Scholar
  66. 66.
    Roy DN, Chattaraj PK (2008) Reactivity, selectivity and aromaticity of Be3 2− and its complexes. J Phys Chem A 112:1612–1621CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of North BengalDarjeelingIndia

Personalised recommendations