Advertisement

Journal of Molecular Modeling

, 24:228 | Cite as

Confinement induced catalytic activity in a Diels-Alder reaction: comparison among various CB[n], n = 6–8, cavitands

  • Manas Ghara
  • Debdutta Chakraborty
  • Pratim K. Chattaraj
Original Paper
  • 122 Downloads
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Abstract

The impact of the size of the confining regime on the thermodynamic and kinetic outcome of a representative Diels-Alder reaction between ethylene and 1,3 butadiene has been investigated in silico. To this end, two organic hosts namely cucurbit[6]uril (CB[6]) and cucurbit[8]uril (CB[8]) have been considered in order to impose confinement on the reactants/transition state/product of the concerned reaction. The obtained results have been compared with the recently reported (Chakraborty et al. ChemPhysChem 18:2162–2170, 2017) corresponding case of the same reaction happening inside cucurbit[7]uril (CB[7]). Results indicate that as compared to the reaction of ethylene and 1,3 butadiene inside CB[7], both CB[6] and CB[8] cavitands slow down the same reaction at 298.15 K and 1 atm. It appears that the size of the cavitand plays a crucial role in affecting the kinetic outcome of the considered reaction. While CB[7] can enforce productive alignment of the reactants inside its cavity thereby facilitating the reaction, neither CB[6] nor CB[8] can perform the same task as effectively. This situation bears qualitative resemblance with the cases of enzyme catalyzed reactions.

Keywords

Confinement Kinetic facilitation Cucurbit[n]uril Host-guest complex Partial covalent bond 

Notes

Acknowledgments

P.K.C. would like to thank DST, New Delhi for a J. C. Bose National Fellowship. MG thanks CSIR, New Delhi for his senior research fellowship.

References

  1. 1.
    Sabin JR, Brandas EJ, Cruz SA (2009) Advances in quantum chemistry: theory of confined quantum systems, vol 57–58. Academic, WalthamGoogle Scholar
  2. 2.
    Grochala W, Hoffmann R, Feng J, Ashcroft NW (2007) The chemical imagination at work in very tight places. Angew Chem Int Ed 46:3620–3642CrossRefGoogle Scholar
  3. 3.
    Krapp A, Frenking G (2007) Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). Chem Eur J 13:8256–8270CrossRefPubMedGoogle Scholar
  4. 4.
    Chakraborty D, Chattaraj PK (2015) Confinement induced binding in noble gas atoms within a BN-doped carbon nanotube. Chem Phys Lett 621:29–34CrossRefGoogle Scholar
  5. 5.
    Schettino V, Bini R (2007) Constraining molecules at the closest approach: chemistry at high pressure. Chem Soc Rev 36:869–880CrossRefPubMedGoogle Scholar
  6. 6.
    Chakraborty D, Pan S, Chattaraj PK (2016) Encapsulation of small gas molecules and rare gas atoms inside the octa acid cavitand. Theor Chem Accounts 135:119CrossRefGoogle Scholar
  7. 7.
    Chakraborty D, Das R, Chattaraj PK (2017) Change in optoelectronic properties of ExBox+4 on functionalization and guest encapsulation. Phys Chem Chem Phys 19:23373–23385CrossRefPubMedGoogle Scholar
  8. 8.
    Gubbins KE, Liu Y-C, Moore JD, Palmer JC (2011) The role of molecular modeling in confined systems: impact and prospects. Phys Chem Chem Phys 13:58–85CrossRefPubMedGoogle Scholar
  9. 9.
    Chakraborty D, Chattaraj PK (2018) Host-guest interactions between octa acid and cations/nucleobases. J Comput Chem 39:161–175CrossRefPubMedGoogle Scholar
  10. 10.
    Nitschke JR (2014) Supramolecular and dynamic covalent reactivity. Chem Soc Rev 43:1798–1799CrossRefPubMedGoogle Scholar
  11. 11.
    Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PW (2014) Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts. Chem Soc Rev 43:1660–1733CrossRefPubMedGoogle Scholar
  12. 12.
    Ballester P, Fujita M, Rebek J (2015) Molecular containers. Chem Soc Rev 44:392–393CrossRefPubMedGoogle Scholar
  13. 13.
    Dong Z, Luo Q, Liu J (2012) Artificial enzymes based on supramolecular scaffolds. Chem Soc Rev 41:7890–7908CrossRefPubMedGoogle Scholar
  14. 14.
    Mock WL, Irra TA, Wepsiec JP, Adhya M (1989) Catalysis by cucurbituril. The significance of bound-substrate destabilization for induced triazole formation. J Org Chem 54:5302–5308CrossRefGoogle Scholar
  15. 15.
    Mock WL, Irra TA, Wepsiec JP, Manimaran TL (1983) Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis. J Org Chem 48:3619–3620CrossRefGoogle Scholar
  16. 16.
    Tuncel D, Steinke JHG (1999) Catalytically self-threading polyrotaxanes. Chem Commun 16:1509–1510Google Scholar
  17. 17.
    Hou X, Ke C, Stoddart JF (2016) Cooperative capture synthesis: yet another playground for copper-free click chemistry. Chem Soc Rev 45:3766–3780CrossRefPubMedGoogle Scholar
  18. 18.
    Vallavoju N, Sivaguru J (2014) Supramolecular photocatalysis: combining confinement and non-covalent interactions to control light initiated reactions. Chem Soc Rev 43:4084–4501CrossRefPubMedGoogle Scholar
  19. 19.
    Carlqvist P, Maseras F (2007) A theoretical analysis of a classic example of supramolecular catalysis. Chem Commun 7:748–750Google Scholar
  20. 20.
    Xu L, Hua W, Hua S, Li J, Li S (2013) Mechanistic insight on the Diels-Alder reaction catalyzed by a self-assembled molecular capsule. J Org Chem 78:3577–3582CrossRefPubMedGoogle Scholar
  21. 21.
    Goehry C, Besora M, Maseras F (2015) Computational study on the mechanism of the acceleration of 1,3-dipolar cycloaddition inside cucurbit[6]uril. ACS Catal 5:2445–2451CrossRefGoogle Scholar
  22. 22.
    Chakraborty D, Das R, Chattaraj PK (2017) Does confinement always lead to thermodynamically and/or kinetically favorable reactions ?: a case study using Diels-Alder reactions within ExBox+4 and CB[7]. ChemPhysChem 18:2162–2170Google Scholar
  23. 23.
    Chakraborty D, Chattaraj PK (2018) Confinement induced thermodynamic and kinetic facilitation of some Diels-Alder reactions inside a CB[7] cavitand. J Comput Chem 39:151–160CrossRefPubMedGoogle Scholar
  24. 24.
    Goehry C, Besora M, Maseras F (2018) Computational description of a Huisgen cycloaddition inside a self-assembled nanocapsule. Eur J Org Chem 18:2103–2109 Google Scholar
  25. 25.
    Daver H, Harvey JN, Rebek JJ, Himo F (2017) Quantum chemical modeling of cycloaddition reaction in a self-assembled capsule. J Am Chem Soc 139:15494–15503CrossRefPubMedGoogle Scholar
  26. 26.
    Behrend R, Meyer E, Rusche F (1905) Ueber Condensationsproducte aus Glycoluril und Formaldehyd. Justus Liebigs Ann Chem 339:1–37Google Scholar
  27. 27.
    Jon SY, Ko YH, Park SH, Kim H-J, Kim K (2001) A facile, stereoselective [2 + 2] photoreaction mediated by cucurbit[8]uril. Chem Commun 19:1938–1939Google Scholar
  28. 28.
    Woodward RB, Hoffmann R (1969) The conservation of orbital symmetry. Angew Chem Int Ed 8:781–853CrossRefGoogle Scholar
  29. 29.
    Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc., Shawnee MissionGoogle Scholar
  30. 30.
    Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104CrossRefGoogle Scholar
  32. 32.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian 09, revision C.01. Gaussian Inc., WallingfordGoogle Scholar
  33. 33.
    Bader RWF (1990) Atoms in molecules: a quantum theory. Clarendon, OxfordGoogle Scholar
  34. 34.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Contreras-Garca J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting non-covalent interaction regions. J Chem Theory Comput 7:625–632CrossRefGoogle Scholar
  36. 36.
    Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115CrossRefGoogle Scholar
  37. 37.
    Macchi P, Proserpio DM, Sironi A (1998) Experimental electron density in a transition metal dimer: metal−metal and metal−ligand bonds. J Am Chem Soc 120:13429–13435CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Center for Theoretical StudiesIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of ChemistryIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations