Advertisement

Journal of Molecular Modeling

, 24:221 | Cite as

Indices to evaluate the reliability of coarse-grained representations of mixed inter/intramolecular vibrations

  • Makoto Isogai
  • Hirohiko Houjou
Original Paper
  • 58 Downloads

Abstract

We propose some methods for quantifying the reliability of coarse-grained representations of displacement vectors of normal mode vibrations. In the framework of our basic theory, the original displacement vectors are projected onto a lower-dimensional (i.e., a coarse-grained) space. Four types of functions denoted fidelity indices were introduced as measures of the similarity of the original to the restored displacement vectors. These indices were applied to several hydrogen-bonded homodimers, and the behavior of each index was examined. We found that a coarse-grained representation with high reliability resulted in the accurate restoration of properties such as eigenfrequency, modal mass, and modal stiffness.

Keywords

Molecular vibration Coarse graining Molecular assembly Normal mode analysis GF matrix method 

Notes

Acknowledgements

This work was supported (in part) by a Grant for Basic Science Research Project in the fiscal year of 2016 received from The Sumitomo Foundation.

References

  1. 1.
    Plusquellic DF, Siegrist K, Heilweil EJ, Esenturk O (2007) Applications of terahertz spectroscopy in biosystems. ChemPhysChem 8:2412–2431.  https://doi.org/10.1002/cphc.200700332 CrossRefPubMedGoogle Scholar
  2. 2.
    Heyden M, Bründermann E, Heugen U et al (2008) Long-range influence of carbohydrates on the solvation dynamics of water—answers from terahertz absorption measurements and molecular modeling simulations. J Am Chem Soc 130:5773–5779.  https://doi.org/10.1021/ja0781083
  3. 3.
    Williams MRC, True AB, Izmaylov AF et al (2011) Terahertz spectroscopy of enantiopure and racemic polycrystalline valine. Phys Chem Chem Phys 13:11719–11730.  https://doi.org/10.1039/c1cp20594c CrossRefPubMedGoogle Scholar
  4. 4.
    Taday PF, Bradley IV, Arnone DD, Pepper M (2003) Using terahertz pulse spectroscopy to study the crystalline structure of a drug: a case study of the polymorphs of ranitidine hydrochloride. J Pharm Sci 92:831–838.  https://doi.org/10.1002/jps.10358 CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang F, Kambara O, Tominaga K et al (2014) Analysis of vibrational spectra of solid-state adenine and adenosine in the terahertz region. RSC Adv 4:269.  https://doi.org/10.1039/c3ra44285c CrossRefGoogle Scholar
  6. 6.
    Giraud G, Wynne K (2003) A comparison of the low-frequency vibrational spectra of liquids obtained through infrared and Raman spectroscopies. J Chem Phys 119:11753–11764.  https://doi.org/10.1063/1.1623747 CrossRefGoogle Scholar
  7. 7.
    Della Valle GR, Venuti E et al (2004) Intramolecular and low-frequency intermolecular vibrations of pentacene polymorphs as a function of temperature. J Phys Chem B 108:1822–1826.  https://doi.org/10.1021/jp0354550 CrossRefGoogle Scholar
  8. 8.
    Luckhaus D (2010) Hydrogen exchange in formic acid dimer; tunneling above the barrier. Phys Chem Chem Phys 12:8357–8361.  https://doi.org/10.1039/c001253j CrossRefPubMedGoogle Scholar
  9. 9.
    Xue Z, Suhm MA (2009) Probing the stiffness of the simplest double hydrogen bond: the symmetric hydrogen bond modes of jet-cooled formic acid dimer. J Phys Chem 131:054301.  https://doi.org/10.1063/1.3191728
  10. 10.
    Müller A, Talbot F, Leutwyler S (2001) Intermolecular vibrations of the jet-cooled 2-pyridone·2-hydroxypyridine mixed dimer, a model for tautomeric nucleic acid base pairs. J Chem Phys 115:5192–5202.  https://doi.org/10.1063/1.1394942 CrossRefGoogle Scholar
  11. 11.
    Muller A, Talbot F, Leutwyler S (2000) Intermolecular vibrations of jet-cooled (2-pyridone)2: a model for the uracil dimer. J Chem Phys 112:3717–3725CrossRefGoogle Scholar
  12. 12.
    Müller A, Talbot F, Leutwyler S (2002) S1/S2 exciton splitting in the (2-pyridone)2 dimer. J Chem Phys 116:2836–2847.  https://doi.org/10.1063/1.1434987 CrossRefGoogle Scholar
  13. 13.
    Taddei G, Bonadeo H, Marzocchi MP, Califano S (1973) Calculation of crystal vibrations of benzene. J Chem Phys 58:966–978CrossRefGoogle Scholar
  14. 14.
    Neto N, Righini R, Califano S (1978) Lattice dynamics of molecular crystals using atom-atom and multipole-multipole potentials. Chem Phys 29:167–179CrossRefGoogle Scholar
  15. 15.
    Zhang F, Wang H, Tominaga K, Hayashi M (2016) Mixing of intermolecular and intramolecular vibrations in optical phonon modes: terahertz spectroscopy and solid-state density functional theory. WIREs Comput Mol Sci 6:386–409.  https://doi.org/10.1002/wcms.1256
  16. 16.
    Day GM, Zeitler JA, Jones W et al (2006) Understanding the influence of polymorphism on phonon spectra: lattice dynamics calculations and terahertz spectroscopy of carbamazepine. J Phys Chem B 110:447–456Google Scholar
  17. 17.
    Day GM (2011) Current approaches to predicting molecular organic crystal structures. Cryst Rev 17:3–52.  https://doi.org/10.1080/0889311X.2010.517526 CrossRefGoogle Scholar
  18. 18.
    Zhang F, Hayashi M, Wang HW et al (2014) Terahertz spectroscopy and solid-state density functional theory calculation of anthracene: effect of dispersion force on the vibrational modes. J Chem Phys 140:174509.  https://doi.org/10.1063/1.4873421 CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang F, Wang H-W, Tominaga K, Hayashi M (2015) Intramolecular vibrations in low-frequency normal modes of amino acids: L-alanine in the neat solid state. J Phys Chem A 119:3008–3022.  https://doi.org/10.1021/jp512164y
  20. 20.
    Williams MRC, Aschaffenburg DJ, Ofori-Okai BK, Schmuttenmaer CA (2013) Intermolecular vibrations in hydrophobic amino acid crystals: experiments and calculations. J Phys Chem B 117:10444–10461.  https://doi.org/10.1021/jp406730a CrossRefPubMedGoogle Scholar
  21. 21.
    Houjou H (2009) Coarse graining of intermolecular vibrations by a Karhunen-Loève transformation of atomic displacement vectors. J Chem Theor Comput 5:1814–1821.  https://doi.org/10.1021/ct900169f
  22. 22.
    Houjou H (2011) Evaluation of coupling terms between intra- and intermolecular vibrations in coarse-grained normal-mode analysis: does a stronger acid make a stiffer hydrogen bond? J Chem Phys 135:154111.  https://doi.org/10.1063/1.3652102 CrossRefPubMedGoogle Scholar
  23. 23.
    Houjou H (2017) Modelling intra- and intermolecular vibrations under the harmonic oscillator approximation: from symmetry-adapted to coarse-grained coordinate approaches. J Math Chem 55:532–551.  https://doi.org/10.1007/s10910-016-0692-x CrossRefGoogle Scholar
  24. 24.
    Wilson Jr EB, Decius JC, Cross PC (1980) Molecular vibrations. Dover, New YorkGoogle Scholar
  25. 25.
    Frisch MJ, Trucks GW, Schlegel HB, et al (2013) Gaussian 09w, revision D. Gaussian Inc., WallingfordGoogle Scholar
  26. 26.
    Jmol Development Team (2018) Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Industrial ScienceThe University of TokyoTokyoJapan

Personalised recommendations