Advertisement

The neural γ2α1β2α1β2 gamma amino butyric acid ion channel receptor: structural analysis of the effects of the ivermectin molecule and disulfide bridges

  • Meral Ayan
  • Sebnem Essiz
Original Paper

Abstract

While ~30% of the human genome encodes membrane proteins, only a handful of structures of membrane proteins have been resolved to high resolution. Here, we studied the structure of a member of the Cys-loop ligand gated ion channel protein superfamily of receptors, human type A γ2α1β2α1β2 gamma amino butyric acid receptor complex in a lipid bilayer environment. Studying the correlation between the structure and function of the gamma amino butyric acid receptor may enhance our understanding of the molecular basis of ion channel dysfunctions linked with epilepsy, ataxia, migraine, schizophrenia and other neurodegenerative diseases. The structure of human γ2α1β2α1β2 has been modeled based on the X-ray structure of the Caenorhabditis elegans glutamate-gated chloride channel via homology modeling. The template provided the first inhibitory channel structure for the Cys-loop superfamily of ligand-gated ion channels. The only available template structure before this glutamate-gated chloride channel was a cation selective channel which had very low sequence identity with gamma aminobutyric acid receptor. Here, our aim was to study the effect of structural corrections originating from modeling on a more reliable template structure. The homology model was analyzed for structural properties via a 100 ns molecular dynamics (MD) study. Due to the structural shifts and the removal of an open channel potentiator molecule, ivermectin, from the template structure, helical packing changes were observed in the transmembrane segment. Namely removal of ivermectin molecule caused a closure around the Leu 9 position along the ion channel. In terms of the structural shifts, there are three potential disulfide bridges between the M1 and M3 helices of the γ2 and 2 α1 subunits in the model. The effect of these disulfide bridges was investigated via monitoring the differences in root mean square fluctuations (RMSF) of individual amino acids and principal component analysis of the MD trajectory of the two homology models—one with the disulfide bridge and one with protonated Cys residues. In all subunit types, RMSF of the transmembrane domain helices are reduced in the presence of disulfide bridges. Additionally, loop A, loop F and loop C fluctuations were affected in the extracellular domain. In cross-correlation analysis of the trajectory, the two model structures displayed different coupling in between the M2–M3 linker region, protruding from the membrane, and the β1-β2/D loop and cys-loop regions in the extracellular domain. Correlations of the C loop, which collapses directly over the bound ligand molecule, were also affected by differences in the packing of transmembrane helices. Finally, more localized correlations were observed in the transmembrane helices when disulfide bridges were present in the model. The differences observed in this study suggest that dynamic coupling at the interface of extracellular and ion channel domains differs from the coupling introduced by disulfide bridges in the transmembrane region. We hope that this hypothesis will be tested experimentally in the near future.

Keywords

Neural GABA type A receptor Allosteric proteins Homology modeling Ligand gated ion channel proteins Conformational dynamics Neurotransmitters 

Notes

Acknowledgments

MD simulations were conducted on 512 processors at the Livermore Computing Center at Lawrence Livermore National Laboratory (Livermore, CA). This work is partially supported by project TUBITAK 3501 no: 114Z867. We thank Dr. Felice Lightstone and Dr. Tim Carpenter for providing a GABA model based on nAchR. Lastly we would like to thank Muhammed Aktolun for his help in the preparation of the figures.

Supplementary material

894_2018_3739_MOESM1_ESM.pdf (194 kb)
ESM 1 (PDF 193 kb)

References

  1. 1.
    Barry PH, Lynch JW (2005) Ligand-gated channels. IEEE T Nanobiosci 4(1):70–80CrossRefGoogle Scholar
  2. 2.
    Tretter V, Ehya N, Fuchs K, Sieghart W (1997) Stoichiometry and assembly of a recombinant GABAA receptor subtype. J Neurosci 17(8):2728–2737CrossRefPubMedGoogle Scholar
  3. 3.
    Carpenter TS, Lau EY, Lightstone FC (2012) A role for loop F in modulating GABA binding affinity in the GABA(A) receptor. J Mol Biol 422(2):310–323.  https://doi.org/10.1016/j.jmb.2012.05.025 CrossRefPubMedGoogle Scholar
  4. 4.
    Galzi JL, Changeux JP (1995) Neuronal nicotinic receptors: molecular organization and regulations. Neuropharmacology 34(6):563–582CrossRefPubMedGoogle Scholar
  5. 5.
    Chang Y, Ghansah E, Chen Y, Ye J, Weiss DS (2002) Desensitization mechanism of GABA receptors revealed by single oocyte binding and receptor function. J Neurosci 22(18):7982–7990CrossRefPubMedGoogle Scholar
  6. 6.
    Ulrich D, Bettler B (2007) GABA(B) receptors: synaptic functions and mechanisms of diversity. Curr Opin Neurobiol 17(3):298–303.  https://doi.org/10.1016/j.conb.2007.04.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Hansen SB, Sulzenbacher G, Huxford T, Marchot P, Taylor P, Bourne Y (2005) Structures of aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J 24(20):3635–3646.  https://doi.org/10.1038/sj.emboj.7600828 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shahsavar A, Kastrup JS, Nielsen EO, Kristensen JL, Gajhede M, Balle T (2012) Crystal structure of Lymnaea stagnalis AChBP complexed with the potent nAChR antagonist DHbetaE suggests a unique mode of antagonism. PLoS One 7(8):e40757.  https://doi.org/10.1371/journal.pone.0040757 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4 angstrom resolution. J Mol Biol 346(4):967–989.  https://doi.org/10.1016/j.jmb.2004.12.031 CrossRefPubMedGoogle Scholar
  10. 10.
    Lee WY, Sine SM (2005) Principal pathway coupling agonist binding to channel gating in nicotinic receptors. Nature 438(7065):243–247.  https://doi.org/10.1038/nature04156 CrossRefPubMedGoogle Scholar
  11. 11.
    Lee WY, Free CR, Sine SM (2009) Binding to gating transduction in nicotinic receptors: Cys-loop energetically couples to pre-M1 and M2-M3 regions. J Neurosci 29(10):3189–3199.  https://doi.org/10.1523/JNEUROSCI.6185-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hilf RJ, Dutzler R (2008) X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452(7185):375–379.  https://doi.org/10.1038/nature06717 CrossRefPubMedGoogle Scholar
  13. 13.
    Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, Delarue M, Corringer PJ (2009) X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457(7225):111–114.  https://doi.org/10.1038/nature07462 CrossRefPubMedGoogle Scholar
  14. 14.
    Bertaccini EJ, Wallner B, Trudell JR, Lindahl E (2010) Modeling anesthetic binding sites within the glycine alpha one receptor based on prokaryotic Ion channel templates: the problem with TM4. J Chem Inf Model 50(12):2248–2255CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Murail S, Wallner B, Trudell JR, Bertaccini E, Lindahl E (2011) Microsecond simulations indicate that ethanol binds between subunits and could stabilize an open-state model of a glycine receptor. Biophys J 100(7):1642–1650CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474(7349):54–U80CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Miller PS, Aricescu AR (2014) Crystal structure of a human GABAA receptor. Nature 512(7514):270–275.  https://doi.org/10.1038/nature13293 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Du J, Lu W, Wu S, Cheng Y, Gouaux E (2015) Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature 526(7572):224–229.  https://doi.org/10.1038/nature14853 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Huang X, Chen H, Michelsen K, Schneider S, Shaffer PL (2015) Crystal structure of human glycine receptor-alpha3 bound to antagonist strychnine. Nature 526(7572):277–280.  https://doi.org/10.1038/nature14972 CrossRefPubMedGoogle Scholar
  20. 20.
    Huang X, Shaffer PL, Ayube S, Bregman H, Chen H, Lehto SG, Luther JA, Matson DJ, McDonough SI, Michelsen K, Plant MH, Schneider S, Simard JR, Teffera Y, Yi S, Zhang M, DiMauro EF, Gingras J (2017) Crystal structures of human glycine receptor alpha3 bound to a novel class of analgesic potentiators. Nat Struct Mol Biol 24(2):108–113.  https://doi.org/10.1038/nsmb.3329 CrossRefPubMedGoogle Scholar
  21. 21.
    Morales-Perez CL, Noviello CM, Hibbs RE (2016) X-ray structure of the human alpha4beta2 nicotinic receptor. Nature 538(7625):411–415.  https://doi.org/10.1038/nature19785 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hassaine G, Deluz C, Grasso L, Wyss R, Tol MB, Hovius R, Graff A, Stahlberg H, Tomizaki T, Desmyter A, Moreau C, Li XD, Poitevin F, Vogel H, Nury H (2014) X-ray structure of the mouse serotonin 5-HT3 receptor. Nature 512(7514):276–281.  https://doi.org/10.1038/nature13552 CrossRefPubMedGoogle Scholar
  23. 23.
    Laverty D, Thomas P, Field M, Andersen OJ, Gold MG, Biggin PC, Gielen M, Smart TG (2017) Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites. Nat Struct Mol Biol 24(11):977–985.  https://doi.org/10.1038/nsmb.3477 CrossRefPubMedGoogle Scholar
  24. 24.
    Gonzalez-Gutierrez G, Wang Y, Cymes GD, Tajkhorshid E, Grosman C (2017) Chasing the open-state structure of pentameric ligand-gated ion channels. J Gen Physiol 149(12):1119–1138.  https://doi.org/10.1085/jgp.201711803 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612.  https://doi.org/10.1002/jcc.20084 CrossRefPubMedGoogle Scholar
  26. 26.
    Corringer PJ, Baaden M, Bocquet N, Delarue M, Dufresne V, Nury H, Prevost M, Van Renterghem C (2010) Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. J Physiol 588(Pt 4):565–572.  https://doi.org/10.1113/jphysiol.2009.183160 CrossRefPubMedGoogle Scholar
  27. 27.
    Mnatsakanyan N, Jansen M (2013) Experimental determination of the vertical alignment between the second and third transmembrane segments of muscle nicotinic acetylcholine receptors. J Neurochem 125(6):843–854.  https://doi.org/10.1111/jnc.12260 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New YorkGoogle Scholar
  29. 29.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948.  https://doi.org/10.1093/bioinformatics/btm404 CrossRefPubMedGoogle Scholar
  30. 30.
    Eswar N, Eramian D, Webb B, Shen MY, Sali A (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426:145–159.  https://doi.org/10.1007/978-1-60327-058-8_8 CrossRefPubMedGoogle Scholar
  31. 31.
    Armstrong N, Gouaux E (2000) Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28(1):165–181CrossRefPubMedGoogle Scholar
  32. 32.
    MacKerrell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCartney D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  33. 33.
    Feller SE, MacKerell AD (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104(31):7510–7515.  https://doi.org/10.1021/jp0007843 CrossRefGoogle Scholar
  34. 34.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pearlman DA, Case DA, Caldwell JC, Seibel GL, Singh UC, Weiner P, Kollman PA (1991) AMBER. 4.1 edn. University of California, San FranciscoGoogle Scholar
  36. 36.
    Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MSP (1996) HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph 14(6):354CrossRefPubMedGoogle Scholar
  37. 37.
    Hayward S, de Groot BL (2008) Normal modes and essential dynamics. Methods Mol Biol 443:89–106.  https://doi.org/10.1007/978-1-59745-177-2_5 CrossRefPubMedGoogle Scholar
  38. 38.
    Issack BB, Berjanskii M, Wishart DS, Stepanova M (2012) Exploring the essential collective dynamics of interacting proteins: application to prion protein dimers. Proteins 80(7):1847–1865.  https://doi.org/10.1002/prot.24082 CrossRefPubMedGoogle Scholar
  39. 39.
    Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486CrossRefPubMedGoogle Scholar
  40. 40.
    Carpenter TS, Lau EY, Lightstone FC (2013) Identification of a possible secondary picrotoxin-binding site on the GABA(A) receptor. Chem Res Toxicol 26(10):1444–1454.  https://doi.org/10.1021/tx400167b CrossRefPubMedGoogle Scholar
  41. 41.
    Cheng MH, Cascio M, Coalson RD (2007) Homology modeling and molecular dynamics simulations of the a1 glycine receptor reveals different states of the channel. Proteins: Struct Funct Bioinf 68:581–593CrossRefGoogle Scholar
  42. 42.
    Althoff T, Hibbs RE, Banerjee S, Gouaux E (2014) X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors. Nature 512(7514):333–337.  https://doi.org/10.1038/nature13669 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Revah F, Bertrand D, Galzi JL, Devillers-Thiery A, Mulle C, Hussy N, Bertrand S, Ballivet M, Changeux JP (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353(6347):846–849.  https://doi.org/10.1038/353846a0 CrossRefPubMedGoogle Scholar
  44. 44.
    Filatov GN, White MM (1995) The role of conserved leucines in the M2 domain of the acetylcholine receptor in channel gating. Mol Pharmacol 48(3):379–384PubMedGoogle Scholar
  45. 45.
    Labarca C, Nowak MW, Zhang H, Tang L, Deshpande P, Lester HA (1995) Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature 376(6540):514–516.  https://doi.org/10.1038/376514a0 CrossRefPubMedGoogle Scholar
  46. 46.
    Keramidas A, Moorhouse AJ, Schofield PR, Barry PH (2004) Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog Biophys Mol Biol 86(2):161–204.  https://doi.org/10.1016/j.pbiomolbio.2003.09.002 CrossRefPubMedGoogle Scholar
  47. 47.
    Yoluk O, Bromstrup T, Bertaccini EJ, Trudell JR, Lindahl E (2013) Stabilization of the GluCl ligand-gated ion channel in the presence and absence of ivermectin. Biophys J 105(3):640–647.  https://doi.org/10.1016/j.bpj.2013.06.037 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Estrada-Mondragon A, Lynch JW (2015) Functional characterization of ivermectin binding sites in alpha1beta2gamma2L GABA(A) receptors. Front Mol Neurosci 8:55.  https://doi.org/10.3389/fnmol.2015.00055 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Khatri A, Weiss DS (2010) The role of loop F in the activation of the GABA receptor. J Physiol 588(Pt 1):59–66.  https://doi.org/10.1113/jphysiol.2009.179705 CrossRefPubMedGoogle Scholar
  50. 50.
    Brejc K, van Dijk WJ, Smit AB, Sixma TK (2002) The 2.7 a structure of AChBP, homologue of the ligand-binding domain of the nicotinic acetylcholine receptor. Novartis Found Symp 245:22–29 discussion 29–32, 165–168PubMedGoogle Scholar
  51. 51.
    Cheng X, Wang H, Grant B, Sine SM, McCammon JA (2006) Targeted molecular dynamics study of C-loop closure and channel gating in nicotinic receptors. PLoS Comput Biol 2(9):e134.  https://doi.org/10.1371/journal.pcbi.0020134 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423(6943):949–955.  https://doi.org/10.1038/nature01748 CrossRefPubMedGoogle Scholar
  53. 53.
    Xue Y, Ward JM, Yuwen T, Podkorytov IS, Skrynnikov NR (2012) Microsecond time-scale conformational exchange in proteins: using long molecular dynamics trajectory to simulate NMR relaxation dispersion data. J Am Chem Soc 134(5):2555–2562.  https://doi.org/10.1021/ja206442c CrossRefPubMedGoogle Scholar
  54. 54.
    Gupta S, Chakraborty S, Vij R, Auerbach A (2017) A mechanism for acetylcholine receptor gating based on structure, coupling, phi, and flip. J Gen Physiol 49:85–103.  https://doi.org/10.1085/jgp.201611673 CrossRefGoogle Scholar
  55. 55.
    Sigel E, Steinmann ME (2012) Structure, function, and modulation of GABA(A) receptors. J Biol Chem 287(48):40224–40231.  https://doi.org/10.1074/jbc.R112.386664 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Taly A, Corringer P-J, Grutter T, Carvalho LP, Karplus M, Changeux J-P (2006) Implications of the quaternary twist allosteric model for the physiology and pathology of nicotinic acetylcholine receptors. Proc Natl Acad Sci USA 103(45):16965–16970CrossRefPubMedGoogle Scholar
  57. 57.
    Cheng X, Ivanov I, Wang H, Sine SM, McCammon JA (2007) Nanosecond-timescale conformational dynamics of the human alpha7 nicotinic acetylcholine receptor. Biophys J 93(8):2622–2634.  https://doi.org/10.1529/biophysj.107.109843 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Speranskiy K, Cascio M, Kurnikova M (2007) Homology modeling and molecular dynamics simulations of the glycine receptor ligand binding domain. Proteins 67(4):950–960CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Law RJ, Lightstone FC (2009) Modeling neuronal nicotinic and GABA receptors: important interface salt-links and protein dynamics. Biophys J 97(6):1586–1594.  https://doi.org/10.1016/j.bpj.2009.06.044 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Martin NE, Malik S, Calimet N, Changeux JP, Cecchini M (2017) Un-gating and allosteric modulation of a pentameric ligand-gated ion channel captured by molecular dynamics. PLoS Comput Biol 13(10):e1005784.  https://doi.org/10.1371/journal.pcbi.1005784 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bioinformatics and Genetics Department, Faculty of Engineering and Natural SciencesKadir Has UniversityFatihTurkey

Personalised recommendations