Advertisement

Computational studies of metal carbonyl complexes of 3[4-ethyl(phenly)imino][indoline-2-one] and 3[4-butyl(phenly)imino][indoline-2-one]

  • Nursel Acar
  • Sevil Şener
Original Paper
  • 92 Downloads

Abstract

Use and application of Schiff bases are extended to many different fields of technology. (ISE)M(CO)5 complex [M = Cr (1), Mo (2), W (3), and where ISE is 3[4-ethyl(phenly)imino][indoline-2-one]; and (ISB)M(CO)5 [M = Cr (4), Mo (5), W (6)], where ISB is 3[4-butly(phenly)imino][indoline-2-one] were investigated by computational methods. Computations were carried out using density functional theory (DFT) with B3LYP and CAM-B3LYP functionals, in conjunction with LanL2DZ basis set for metals and cc-PVTZ basis set for other atoms. Time-dependent density functional theory (TDDFT) was used at the same level to obtain the electronic transitions. Molecular orbital energies, UV-Vis spectra, and total electron densities of investigated molecules were shown in the gas phase and in THF. Metal complexes showed higher absorption coefficients compared to ISE and ISB in the visible region. Additionally, they displayed absorption peaks at longer wavelengths and full MLCT character in solution, and W complexes required less energy compared to the complexes of other investigated metal ions. Among the investigated systems, (ISE)W(CO)5 and (ISB)W(CO)5 complexes with lowest HOMO-LUMO gaps are found to be the best candidates for photosensitive material production.

Graphical Abstract

UV-Vis absorption spectra of ISE and (ISE)W(CO)5

Keywords

Isatin Schiff base Metal carbonyl complex Metal-ligand charge transfer UV-Vis absorption spectra Density functional theory 

Notes

Acknowledgments

Use of computer time on FenCluster (Ege University Faculty of Science) is acknowledged. We thank TUBITAK-ULAKBIM Truba Resources for some of the calculations.

Supplementary material

894_2018_3709_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1547 kb)

References

  1. 1.
    Silva JFM, Garden SJ, Pinto AC, Braz J (2001) The chemistry of isatins: a review from 1975 to 1999. Braz Chem Soc 12(3):273–324.  https://doi.org/10.1590/S0103-50532001000300002
  2. 2.
    Pardasani RT, Pardasani P, Ghosh R, Sherry D, Mukherjee T (1999) Synthetic and spectral studies of novel spiro {bicyclo[3,3,0]octene-8,3′(2′H)-indol}-2′-ones obtained from indol-2,3-diones. Heteroat Chem 10(5):381–384.  https://doi.org/10.1002/(SICI)1098-1071(1999)10:5<381::AID-HC7>3.0.CO;2-V CrossRefGoogle Scholar
  3. 3.
    Manton JC, Amirjalayer S, Coleman AC, McMahon S, Harvey EC, Greetham GM, Clark IP, Buma WJ, Woutersen S, Prycea MT, Long C (2014) Excited state evolution towards ligand loss and ligand chelation at group 6 metal carbonyl centres. Dalton Trans 43:17797–17805.  https://doi.org/10.1039/c4dt01544d CrossRefPubMedGoogle Scholar
  4. 4.
    Garino C, Salassa L (2013) The photochemistry of transition metal complexes using density functional theory. Phil Trans R Soc A 371(20120134):1–24.  https://doi.org/10.1098/rsta.2012.0134 CrossRefGoogle Scholar
  5. 5.
    Villaume S, Strich A, Daniel C, Perera SA, Bartlett RJ (2007) A coupled cluster study of the electronic spectroscopy and photochemistry of Cr(CO)6. Phys Chem Chem Phys 9:6115–6122.  https://doi.org/10.1039/b709050a CrossRefPubMedGoogle Scholar
  6. 6.
    Beach NA, Gray HB (1968) Electronic structures of metal hexacarbonyls. J Am Chem Soc 90(21):5713–5721Google Scholar
  7. 7.
    Fachinetti G, Floriani C, Zanazzi PF, Zanzari AR (1978) Isolation of the ion pair NaCo(CO)4 promoted by an inorganic ligand: structure and properties of [(Co(salen))2NaCo(CO)4THF]. Inorg Chem 17:3002–3007.  https://doi.org/10.1021/ic50189a007 CrossRefGoogle Scholar
  8. 8.
    Hobday MD, Smith TD (1972) Reaction of indium(III) and gallium(III) halides with transition-metal ion Schiff-base complexes. J Chem Soc Dalton Trans 20:2287–2289.  https://doi.org/10.1039/DT9720002287 CrossRefGoogle Scholar
  9. 9.
    Ade SB, Deshpande MN, Deshmukh HH (2012) Synthesis and characterization of transition metal complexes of schiff base derived from isatin and 2-amino, 4-chloro benzoic acid. RASAYAN J Chem 5:10–15Google Scholar
  10. 10.
    Pandaye SN, Sriram D (1998) Synthesis and screening for antibacterial activity of Schiff's and Mannich bases of isatin and its derivatives. Acta Pharm Turcica 40:33–38Google Scholar
  11. 11.
    Sarangapani M, Reddy VM (1994) Phramacological evaluation of 1-(N,N-disubstituted aminomethyl)-3-imino-(2-phenyl-3,4-dihydro-4-oxo-quinazolin-3-yl) indolin-2-ones. Indian J Pharm Sci 56:174–177Google Scholar
  12. 12.
    Varma RS, Nobles WL (1975) Antiviral, antibacterial, and antifungal activities of isatin N-mannich bases. J Pharm Sci 64:881–882.  https://doi.org/10.1002/jps.2600640539 CrossRefPubMedGoogle Scholar
  13. 13.
    Pandaye SN, Sriram D, Nath G, De Clercq E (1999) Synthesis, antibacterial, antifungal and anti-HIV activity of schiff and mannich bases of isatin with N-[6-chlorobenzothiazol-2-yl] thiosemicarbazide. Indian J Pharm Sci 61:358–361Google Scholar
  14. 14.
    Varma RS, Nobles WL (1967) Synthesis and antiviral and antibacterial activity of certain N-dialkyaminomethylisatin β-thiosemicarbazones. J Med Chem 10:972–974.  https://doi.org/10.1021/jm00317a061 CrossRefPubMedGoogle Scholar
  15. 15.
    Singh SP, Shukla SK, Awasthi LP (1983) Synthesis of some 3–(4′-nitrobenzoylhydrazono)–2-indolinones as potential antiviral agents. Curr Sci 52:766–769Google Scholar
  16. 16.
    Logan JC, Fox MP, Morgan JH, Makohon AM, Pfau CJ (1975) Arenavirus inactivation on contact with N-substituted isatin beta-thiosemicarbazones and certain cations. J Gen Virol 28:271–283.  https://doi.org/10.1099/0022-1317-28-3-271 CrossRefPubMedGoogle Scholar
  17. 17.
    Pandaye SN, Yogeswari P, Sriram D, De Clercq E, Pannecouque C, Witvrouw M (1999) Synthesis and screening for anti-HIV activity of some N-Mannich bases of isatin derivatives. Chemotherapy 45:192–196.  https://doi.org/10.1159/000007182 CrossRefGoogle Scholar
  18. 18.
    Pandaye SN, Sriram D, Nath G, De Clercq E (2000) Synthesis, antibacterial, antifungal and anti-HIV activities of norfloxacin Mannich bases. Eur J Med Chem 35(2):249–255.  https://doi.org/10.1016/S0223-5234(00)00125-2 CrossRefGoogle Scholar
  19. 19.
    Pandaye SN, Sriram D, Nath G, De Clercq E (2000) Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin and its derivatives with triazole. Arzneimittel-Forschun/Drug Res 50:55–59.  https://doi.org/10.1055/s-0031-1300164
  20. 20.
    Imam SA, Varma RS (1975) Isatin-3-anils as excystment and cysticidal agents against Schizopyrenus russelli. Experientia 31:1287–1288CrossRefPubMedGoogle Scholar
  21. 21.
    Varma RS, Khan IA, Polish J (1977) Potential biologically active agents. X. Synthesis of 3-arylimino-2-indolinones, and their 1-methyl- and 1-morpholino/piperidinomethyl derivatives as excystment and cysticidal agents against Schizopyrenus russelli. Pharmacol Pharm 29:549–554Google Scholar
  22. 22.
    Sarciron SE, Audin P, Delebre I, Gabrion C, Petavy AF, Paris J (1993) Synthesis, anticonvulsant and antimicrobial activities of novel Mannich bases of isatin derivatives. J Pharm Sci 82:605–609Google Scholar
  23. 23.
    Matviiuk T, Rodriguez F, Saffon N, Mallet-Ladeira S, Gorichko M, de Jesus Lopes Ribeiro AL, Pasca MR, Lherbet C, Voitenko Z, Baltas M (2013) Design, chemical synthesis of 3-(9H-fluoren-9-yl)pyrrolidine-2,5-dione derivatives and biological activity against enoyl-ACP reductase (InhA) and Mycobacterium tuberculosis. Eur J Med Chem 70:37–48.  https://doi.org/10.1016/j.ejmech.2013.09.041 CrossRefPubMedGoogle Scholar
  24. 24.
    Prakash A, Adhikari D (2011) Application of Schiff bases and their metal complexes-a review. Int J ChemTech Res 3(4):1891–1896Google Scholar
  25. 25.
    Tyagi P, Chandra S, Saraswat BS, Yadav D (2015) Design, spectral characterization, thermal, DFT studies and anticancer cell line activities of Co(II), Ni(II) and Cu(II) complexes of Schiff bases derived from 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol. Spectrochim Acta A Mol Biomol Spectrosc 145:155–164.  https://doi.org/10.1016/j.saa.2015.03.034 CrossRefPubMedGoogle Scholar
  26. 26.
    Ziółek M, Kubicki J, Maciejewski A, Naskrȩcki R, Grabowska A (2016) Enol-keto tautomerism of aromatic photochromic Schiff base -bis(salicylidene)- -phenylenediamine: ground state equilibrium and excited state deactivation studied by solvatochromic measurements on ultrafast time scale. J Chem Phys 124:124518–124510.  https://doi.org/10.1063/1.2179800 CrossRefGoogle Scholar
  27. 27.
    Öztürk S, Akkurt M, Özgür MÜ, Erçağ A, Heinemann FW (2003) (3E)-3-[(4-hexyl­phenyl)­imino]1H-indol-2(3H)-one. Acta Cryst Section E 59:569–571.  https://doi.org/10.1107/S1600536803006809 CrossRefGoogle Scholar
  28. 28.
    Şener S, Erçag A (2017) Photochemical reactions of metal carbonyls [ M(CO)6 (M = Cr, Mo, W), Mn(CO)3Cp] with 3[4-ethyl(phenly)imino][1H-indol-2-one] and 3[4-butyl(phenly)imino][1H-indol-2-one]. Asian J Chem 29(2):235–238  https://doi.org/10.14233/ajchem.2017.20004 CrossRefGoogle Scholar
  29. 29.
    Wavefunction Inc. (2008) Spartan 08 for Windows. Wavefunction Inc., IrvineGoogle Scholar
  30. 30.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision C.01. Gaussian Inc., Wallingford Google Scholar
  31. 31.
    Dennington R, Keith T, Millam J (2009) GaussView 5.0. Semichem Inc., Shawnee MissionGoogle Scholar
  32. 32.
    Kohn W, Sham LJ (1965) Self-Consistant equations including exchange and correlation effects. Phys Rev 140:A1133–A1138.  https://doi.org/10.1103/PhysRev.140.A1133. CrossRefGoogle Scholar
  33. 33.
    Beck AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 38:3098–3100.  https://doi.org/10.1103/PhysRevA.38.3098. CrossRefGoogle Scholar
  34. 34.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652.  https://doi.org/10.1063/1.464913
  35. 35.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789.  https://doi.org/10.1103/PhysRevB.37.785
  36. 36.
    Yanai T, Tew D, Handy N (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57.  https://doi.org/10.1016/j.cplett.2004.06.011 CrossRefGoogle Scholar
  37. 37.
    Dunning Jr TH, Hay PJ (1977) In: Schaefer HF III (ed) Modern theoretical chemistry, vol 3. Plenum, New York, pp 1–28Google Scholar
  38. 38.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations – potentials for the transition-metal atoms Sc to Hg. J Chem Phys 82:270–283.  https://doi.org/10.1063/1.448799
  39. 39.
    Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations – potentials for main group elements Na to Bi. J Chem Phys 82:284–298.  https://doi.org/10.1063/1.448800
  40. 40.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations – potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310  https://doi.org/10.1063/1.448975
  41. 41.
    Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct THEOCHEM 464:211–226.  https://doi.org/10.1016/S0166-1280(98)00553-3
  42. 42.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093.  https://doi.org/10.1021/cr9904009
  43. 43.
    Ochterski JW (2000) Thermochemistry in Gaussian. Gaussian, Inc., WallingfordGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceEge UniversityBornovaTurkey
  2. 2.Department of Chemical Technology, Aliağa Vocational SchoolEge UniversityAliağaTurkey

Personalised recommendations