Skip to main content

Advertisement

Log in

Growth analysis of sodium-potassium alloy clusters from 7 to 55 atoms through a genetic algorithm approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The potential energy hypersurface associated with sodium-potassium alloy clusters is explored via an enhanced genetic algorithm, where two different operators are added to the standard evolutionary procedure. Based on the recent result that the empirical Gupta many-body potential yields reasonable results for clusters with more than seven atoms, we have employed this function in the evaluation of the energies. Agglomerates from seven to the well-established 55-atom structure are studied, and their second-order energy difference and excess energies are calculated. It is found that the most stable alloys (compared to the homonuclear counterparts) are found with the proportion of sodium atoms in the range of 30 to 40%. The experimental propensity of core-shell segregation is successfully predicted by the current approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rodrigues DDC, Nascimento AM, Duarte HA, Belchior JC (2008) Chem Phys 349:91

    Article  CAS  Google Scholar 

  2. Aguado A, López JM (2010) J Chem Phys 133:094302

    Article  Google Scholar 

  3. Jensen P (1999) Rev Mod Phys 71:1695

    Article  CAS  Google Scholar 

  4. Baletto F, Ferrando R (2005) Rev Mod Phys 77:371

    Article  CAS  Google Scholar 

  5. Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M, Chi M, More KL, Li Y, Markovic NM, Somorjai GA, Yang P, Stamenkovic VR (2014) Science 343:1339

    Article  CAS  Google Scholar 

  6. Wilcoxon JP, Provencio PP (2004) J Am Chem Soc 126:6402

    Article  CAS  Google Scholar 

  7. Tchaplyguine M, Legendre S, Rosso A, Bradeanu I, Öhrwall G, Canton SE, Andersson T, Mårtensson N, Svensson S, Björneholm O (2009) Phys Rev B 80:033405

    Article  Google Scholar 

  8. Silva MX, Galvão BRL, Belchior JC (2014) Phys Chem Chem Phys 16:8895

    Article  CAS  Google Scholar 

  9. Bréchignac C, Cahuzac P, Carlier F, Leygnier J (1989) Chem Phys Lett 164:433

    Article  Google Scholar 

  10. Selby K, Vollmer M, Masui J, Kresin V, de Heer WA, Knight WD (1989) Phys Rev B 40:5417

    Article  CAS  Google Scholar 

  11. Selby K, Kresin V, Masui J, Vollmer M, de Heer WA, Scheidemann A, Knight WD (1991) Phys Rev B 43: 4565

    Article  CAS  Google Scholar 

  12. Solov’yov IA, Solov’yov AV, Greiner W (2002) Phys Rev A 65:053203

    Article  Google Scholar 

  13. Knight WD, Clemenger K, de Heer WA, Saunders WA (1985) Phys Rev B 31:2539

    Article  CAS  Google Scholar 

  14. Knight WD, Clemenger K, de Heer WA, Saunders WA, Chou MY, Cohen ML (1984) Phys Rev Lett 52: 2141

    Article  CAS  Google Scholar 

  15. Banerjee A, Ghanty TK, Chakrabarti A (2008) J Phys Chem A 112:12303

    Article  CAS  Google Scholar 

  16. Chandrakumar KRS, Ghanty TK, Ghosha SK (2004) J Chem Phys 120:6487

    Article  CAS  Google Scholar 

  17. Bonačić-Koutecký V, Fantucci P, Koutecký J (1988) Phys Rev B 37:4369

    Article  Google Scholar 

  18. Kornath A, Ludwig R, Zoermer A (1998) Angew Chem Int Ed 37:1575

  19. Hauser AW, Callegari C, Soldán P, Ernst WE (2008) J Chem Phys 129:044307

    Article  Google Scholar 

  20. González DJ, González LE, Stott MJ (2005) Phys Rev Lett 94:07781

    Article  Google Scholar 

  21. Aguado A, López JM (2011) J Chem Phys 135:134305

    Article  Google Scholar 

  22. Alexandrova AN, Boldyrev AI (2005) J Chem Theory Comput 1:566

    Article  CAS  Google Scholar 

  23. Alexandrova AN, Boldyrev AI, Li X, Sarkas HW, Hendricks JH, Arnold ST, Bowen KH (2011) J Chem Phys 134:044322

    Article  Google Scholar 

  24. Li Y, Blaisten-Barojas E, Papaconstantopoulos DA (1998) Phys Rev B 57:15549

    Google Scholar 

  25. Reyes-Nava JA, Garzón IL, Beltrán MR, Michaelian K (2002) Rev Mex Fís 48:450

    CAS  Google Scholar 

  26. Gupta RP (1981) Phys Rev B 23:6265

    Article  CAS  Google Scholar 

  27. Cleri F, Rosato V (1993) Phys Rev B 48:22

    Article  CAS  Google Scholar 

  28. Guimarães FF, Belchior JC, Johnston RL, Roberts C (2002) J Chem Phys 116:8327

    Article  Google Scholar 

  29. Lordeiro RA, Guimarães FF, Belchior JC, Johnston RL (2003) Int J Quantum Chem 95:112

    Article  CAS  Google Scholar 

  30. Schlegel HB (1987) Adv Chem Phys 67:249

    CAS  Google Scholar 

  31. Zeiri Y (1995) Phys Rev E 51:R2769

    Article  CAS  Google Scholar 

  32. Roberts C, Johnston RL, Wilson N (2000) Theoret Chim Acta 104:123

    Article  CAS  Google Scholar 

  33. Lai SK, Hsu PJ, Wu KL, Liu WK, Iwamatsu M (2002) J Chem Phys 117:10715

    Article  CAS  Google Scholar 

  34. Ferrando R, Jellinek J, Johnston RL (2008) Chem Rev (Washington, D.C.) 108:845

    Article  CAS  Google Scholar 

  35. Jellinek J, Krissinel EB (1996) Chem Phys Lett 258:283–292

Download references

Acknowledgments

This work was financially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do estado de Minas Gerais (FAPEMIG) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Belchior.

Additional information

This paper belongs to Topical Collection Brazilian Symposium of Theoretical Chemistry (SBQT2013)

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 123 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, M.X., Galvão, B.R.L. & Belchior, J.C. Growth analysis of sodium-potassium alloy clusters from 7 to 55 atoms through a genetic algorithm approach. J Mol Model 20, 2421 (2014). https://doi.org/10.1007/s00894-014-2421-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2421-3

Keywords

Navigation