Skip to main content
Log in

Interdomain communication in the endonuclease/motor subunit of type I restriction-modification enzyme EcoR124I

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Restriction-modification systems protect bacteria from foreign DNA. Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA-cleavage and ATP-dependent DNA translocation activities located on endonuclease/motor subunit HsdR. The recent structure of the first intact motor subunit of the type I restriction enzyme from plasmid EcoR124I suggested a mechanism by which stalled translocation triggers DNA cleavage via a lysine residue on the endonuclease domain that contacts ATP bound between the two helicase domains. In the present work, molecular dynamics simulations are used to explore this proposal. Molecular dynamics simulations suggest that the Lys–ATP contact alternates with a contact with a nearby loop housing the conserved QxxxY motif that had been implicated in DNA cleavage. This model is tested here using in vivo and in vitro experiments. The results indicate how local interactions are transduced to domain motions within the endonuclease/motor subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3a–d
Fig. 4a–b
Fig. 5a–b
Fig. 6a–c
Fig. 7

Similar content being viewed by others

References

  1. Murray NE (2002) Immigration control of DNA in bacteria: self versus non-self. Microbiology 148:3–20

    CAS  Google Scholar 

  2. Lapkouski M, Panjikar S, Janscak P, Smatanova IK, Carey J, Ettrich R, Csefalvay E (2009) Structure of the motor subunit of type I restriction-modification complex EcoR124I. Nat Struct Mol Biol 16:94–105

    Article  CAS  Google Scholar 

  3. Gorbalenya AE, Koonin EV (1991) Endonuclease (R) subunits of type-I and type-III restriction–modification enzymes contain a helicase-like domain. FEBS Lett 291:277–281

    Article  CAS  Google Scholar 

  4. Obarska-Kosinska A, Taylor JE, Callow P, Orlowski J, Bujnicki JM, Kneale GG (2008) HsdR subunit of the type I restriction-modification enzyme EcoR124I: biophysical characterisation and structural modelling. J Mol Biol 376(2):438–452

    Article  CAS  Google Scholar 

  5. Sisakova E, Stanley LK, Weiserova M, Szczelkun MD (2008) A RecB-family nuclease motif in type I restriction endonuclease EcoR124I. Nucleic Acids Res 36:3939–3949

    Article  CAS  Google Scholar 

  6. Niv MY, Ripoll DR, Vila JA, Liwo A, Vanamee ES, Aggarwal AK, Weinstein H, Scheraga HA (2007) Topology of type II REases revisited; structural classes and the common conserved core. Nucleic Acids Res 35:2227–2237

    Article  CAS  Google Scholar 

  7. Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA; a self-parameterizing force field. Proteins 47:393–402

    Article  CAS  Google Scholar 

  8. Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) MUSTANG: a multiple structural alignment algorithm. Proteins 64:559–574

    Article  CAS  Google Scholar 

  9. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  10. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comp Phys Comm 91:43–56

    Article  CAS  Google Scholar 

  11. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854

    Article  CAS  Google Scholar 

  12. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple AMBER force fields and development of improved protein backbone parameters. Proteins 65:712–725

  13. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general AMBER force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Pople JA et al. (2004) GAUSSIAN 03 (revision C.02). Gaussian, Inc., Wallingford

  15. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926

    Article  CAS  Google Scholar 

  16. Darden T, York D, Pedersen L, Ewald P (1993) An N·log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

  17. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comp Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  18. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  Google Scholar 

  19. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182

    Article  CAS  Google Scholar 

  20. Hayward S, Kitao A, Berendsen HJC (1997) Model-free methods of analyzing domain motions in proteins from simulation: a comparison of normal mode analysis and molecular dynamics simulation of lysozyme. Proteins 27:425–437

    Article  CAS  Google Scholar 

  21. Hayward S, Berendsen HJC (1998) Systematic analysis of domain motions in proteins from conformational change; new results on citrate synthase and T4 lysozyme. Proteins 30:144–154

    Article  CAS  Google Scholar 

  22. Amadei A, Linnssen AB, Berendsen HJ (1993) Essential dynamics of proteins. Proteins 17:412–25

    Article  CAS  Google Scholar 

  23. Schrödinger LLC (2011) QSite 5.7. Schrödinger LLC, New York

  24. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132:154104–154123

  25. Boys SF, Bernardi F (1970) Calculation of small molecular interactions by differences of separate total energies—some procedures with reduced errors. Molec Phys 19:553–556

  26. Schrödinger LLC (2011) Impact 5.7. Schrödinger LLC, New York

  27. Jorgensen WL, Tirado-Rives J (2005) Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci USA 102:6665–6670

  28. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

  29. Janscak P, Abadjieva A, Firman K (1996) The type I restriction endonuclease R.EcoR124I: over-production and biochemical properties. J Mol Biol 257(5):977–991

    Article  CAS  Google Scholar 

  30. Holubova I, Vejsadová Š, Firman K, Weiserova M (2004) Cellular localization of type I restriction-modification enzymes is family dependent. Biochem Biophys Res Commun 319:375–380

    Article  CAS  Google Scholar 

  31. Patel J, Taylor I, Dutta CF, Kneale G, Firman K (1992) High-level expression of the cloned genes encoding the subunits of and intact DNA methylase, M.EcoR124. Gene 112:21–27

    Article  CAS  Google Scholar 

  32. Taylor I, Patel J, Firman K, Kneale GG (1992) Purification and biochemical characterization of the EcoR124 type I modification methylase. Nucleic Acids Res 20:179–186

    Article  CAS  Google Scholar 

  33. Jacob F, Wollman EL (1954) Etude génétique d’un bactériophage tempéré d’Escherichia coli. III. Effet du rayonnement ultraviolet sur la recombinaison génétique. Ann Inst Pasteur 87:653–673

  34. Colson C, Glover SW, Symons N, Stanley KA (1965) The location of the genes for host-controlled modification and restriction in Escherichia coli K-12. Genetics 52:1043–1050

    CAS  Google Scholar 

  35. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  Google Scholar 

  36. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11(7):36–42

    Google Scholar 

  37. Chan KM, Delfert D, Junger KD (1986) A direct calorimetric assay for Ca2+ stimulated ATPase activity. Anal Biochem 157:375–380

    Article  CAS  Google Scholar 

  38. Davies GP, Martin I, Sturrock SS, Cronshaw A, Murray NE, Dryden DTF (1999) On the structure and operation of type I DNA restriction enzymes. J Mol Biol 290:565–579

    Article  CAS  Google Scholar 

  39. Uyen NT, Park S, Choi J, Lee HJ, Nishi K, Kim JS (2009) The fragment structure of a putative HsdR subunit of a type I restriction enzyme from Vibrio vulnificus YJ016: implications for DNA restriction and translocation activity. Nucleic Acids Res 37:6960–6969

  40. Sisakova E, Weiserova M, Dekker C, Seidel R, Szczelkun MD (2008) The interrelationship of helicase and nuclease domains during DNA translocation by the molecular motor EcoR124I. J Mol Biol 384:1273–1286

    Article  CAS  Google Scholar 

  41. Studier FW, Bandyopadhyay PK (1988) Model for how type I restriction enzymes select cleavage sites in DNA. Proc Natl Acad Sci USA 85:4677–4681

Download references

Acknowledgments

We gratefully acknowledge support from the Czech Science Foundation (P207/12/2323 to RE and MW), the institutional research project RVO 61388971, and joint Czech–US National Science Foundation international research cooperation (DBI10-04830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Ettrich.

Additional information

Dhiraj Sinha and Katsiaryna Shamayeva contributed equally.

This paper belongs to Topical Collection MIB 2013 (Modeling Interactions in Biomolecules VI)

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1a–c

RMSD relative to the starting structure. The root-mean-square deviation (RMSD, Å) of Cα positions is derived every 1 ps during the trajectory by overlaying each simulation structure with its corresponding initial structure by Cα superposition. a WT HsdR. b Restrained WT. c Arg182Ala mutant. (GIF 30 kb)

High-resolution image (TIFF 87 kb)

Supplemental Fig. 2a–c

Root-mean-square fluctuation (RMSF, Å) calculated during the last 20 ns of each simulation for each Cα atom is plotted vs. residue number. a WT HsdR. b Restrained WT. c Arg182Ala mutant. (GIF 45 kb)

High-resolution image (TIFF 132 kb)

Supplemental Fig. 3a–c

Root-mean-square fluctuation (RMSF, Å) calculated during the last 20 ns of each simulation for each Cα atom of the endonuclease domain is plotted vs. residue number. a WT HsdR. b Restrained WT. c Arg182Ala mutant. The secondary structures assigned in the PDB file by DSSP are shown under each panel, with red bars representing helical segments, yellow bars representing strand segments, and gray bars representing irregular segments. (GIF 43 kb)

High-resolution image (TIFF 134 kb)

ESM

(PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, D., Shamayeva, K., Ramasubramani, V. et al. Interdomain communication in the endonuclease/motor subunit of type I restriction-modification enzyme EcoR124I. J Mol Model 20, 2334 (2014). https://doi.org/10.1007/s00894-014-2334-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2334-1

Keywords

Navigation