Journal of Molecular Modeling

, Volume 18, Issue 1, pp 27–37 | Cite as

Molecular modeling, docking and dynamics simulations of GNA-related lectins for potential prevention of influenza virus (H1N1)

  • Huai-long Xu
  • Chun-yang Li
  • Xue-mei He
  • Ke-qin Niu
  • Hao Peng
  • Wen-wen Li
  • Cheng-cheng Zhou
  • Jin-ku BaoEmail author
Original Paper


The Galanthus nivalis agglutinin (GNA)-related lectin family exhibit significant anti-HIV and anti-HSV properties that are closely related to their carbohydrate-binding activities. However, there is still no conclusive evidence that GNA-related lectins possess anti-influenza properties. The hemagglutinin (HA) of influenza virus is a surface protein that is involved in binding host cell sialic acid during the early stages of infection. Herein, we studied the 3D-QSARs (three-dimensional quantitative structure–activity relationships) of lectin– and HA–sialic acid by molecular modeling. The affinities and stabilities of lectin– and HA–sialic acid complexes were also assessed by molecular docking and molecular dynamics simulations. Finally, anti-influenza GNA-related lectins that possess stable conformations and higher binding affinities for sialic acid than HAs of human influenza virus were screened, and a possible mechanism was proposed. Accordingly, our results indicate that some GNA-related lectins, such as Yucca filamentosa lectin and Polygonatum cyrtonema lectin, could act as drugs that prevent influenza virus infection via competitive binding. In conclusion, the GNA-related lectin family may be helpful in the design of novel candidate agents for preventing influenza A infection through the use of competitive combination against sialic acid specific viral infection.


Galanthus nivalis agglutinin (GNA)-related lectins Hemagglutinin (HA) Influenza A virus Polygonatum cyrtonema lectin (PCL) Viral infection 



Galanthus nivalis agglutinin


Tulipa gesneriana lectin


Yucca filamentosa lectin


Yucca filamentosa lectin


Three-dimensional quantitative structure–activity relationship


Arum maculatum lectin


Arisaema amurense lectin


Pinellia cordata lectin


Alocasia macrorrhiza lectin


Pinellia ternata lectin


Polygonatum cyrtonema lectin


Arisaema heterophyllum lectin




1934 Human H1 HA


1918 Human H1 HA


Viral nucleoprotein



We are grateful to Miss Mingwei Min (University of Cambridge) and Qian Liu (National University of Singapore) for their critical reviews of this manuscript. This work was supported in part by grants from the National Natural Science Foundation of China (General Programs: no. 30670469 and no. 30970643).

Supplementary material

894_2011_1022_Fig7_ESM.gif (1 mb)
Fig. S1

Sequences of 51 potential sialic acid-binding GNA-related lectins. Conserved ‘QXDXNXVXY’ motif of GNA-related lectins plays a crucial role in this mannose recognition, whereas, sialic acid binding activities of GNA-related lectins might result from the amino acid mutation of conservative mannose-binding motif of GNA-related lectins (GIF 1040 kb)

894_2011_1022_MOESM1_ESM.tif (3.8 mb)
High resolution image file (TIFF 3907 kb)
894_2011_1022_Fig8_ESM.gif (345 kb)
Fig. S2

The overall modeling of GNA-related lectins in complex with sialic acid. (A) YFL-II lectin, the first binding type of GNA-related lectin, in complex with sialic acid. (B-F) The second binding type of GNA-related lectin-sialic acid complexes including AHL-sialic acid (B), AMLb-sialic acid (C), PCL-sialic acid (D), PLC-sialic acid (E) and PTL-sialic acid (F) complexes (GIF 344 kb)

894_2011_1022_MOESM2_ESM.tif (9.9 mb)
High resolution image file (TIFF 10159 kb)
894_2011_1022_Fig9_ESM.gif (163 kb)
Fig. S3

Secondary structure variations of proteins (GNA-related lectins and HAs)-sialic acid complexes by molecular dynamics simulation. Secondary structure variations over time for the 1918 Human H1 HA-sialic acid (A), TGL-sialic acid (B), YFL-II-sialic acid (C), AAL-sialic acid (D), AHL-sialic acid (E), AMLb-sialic acid (F), PCL-sialic acid (G), PLC-sialic acid (H) and PTL-sialic acid (I) complexes (GIF 162 kb)

894_2011_1022_MOESM3_ESM.tif (1.6 mb)
High resolution image file (TIFF 1673 kb)
894_2011_1022_Fig10_ESM.gif (71 kb)
Fig. S4

Hydrogen-bond variations of proteins (GNA-related lectins and HAs)-sialic acid complexes by molecular dynamics simulation. Hydrogen-bond variations over time for the 1918 Human H1 HA-sialic acid (A), TGL-sialic acid (B), YFL-II-sialic acid (C), AAL-sialic acid (D), AHL-sialic acid (E), AMLb-sialic acid (F), PCL-sialic acid (G), PLC-sialic acid (H) and PTL-sialic acid (I) complexes (GIF 70 kb)

894_2011_1022_MOESM4_ESM.tif (6 mb)
High resolution image file (TIFF 6146 kb)
Video S1

Motions of YFL-I-sialic acid complex during simulation time. Yucca filamentosa lectin has been abbreviated as YFL-I (MPG 1262 kb)

Video S2

Motions of HA-I-sialic acid complex during simulation time. 1934 Human H1 HA has been abbreviated as HA-I (MPG 726 kb)


  1. 1.
    Goldstein IJ, Hughes RC, Monsigny T, Osawa T, Sharon N (1980) What should be called a lectin? Nature 285:66CrossRefGoogle Scholar
  2. 2.
    Sharon N, Lis H (1989) Lectins as cell recognition molecules. Science 246:227–234CrossRefGoogle Scholar
  3. 3.
    Liu B, Bian HJ, Bao JK (2010) Plant lectins: potential antineoplastic drugs from bench to clinic. Cancer Lett 287:1–12CrossRefGoogle Scholar
  4. 4.
    Balzarini J (2007) Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy. Nat Rev Microbiol 5:583–597CrossRefGoogle Scholar
  5. 5.
    Liu B, Zhang B, Min MW, Bian HJ, Chen LF, Liu Q, Bao JK (2009) Induction of apoptosis by Polygonatum odoratum lectin and its molecular mechanisms in murine fibrosarcoma L929 cells. Biochim Biophys Acta 1790:840–844CrossRefGoogle Scholar
  6. 6.
    Liu B, Cheng Y, Zhang B, Bian HJ, Bao JK (2009) Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS-p38-p53 pathway. Cancer Lett 275:54–60CrossRefGoogle Scholar
  7. 7.
    Liu B, Cheng Y, Bian HJ, Bao JK (2009) Molecular mechanisms of Polygonatum cyrtonema lectin-induced apoptosis and autophagy in cancer cells. Autophagy 5:253–255CrossRefGoogle Scholar
  8. 8.
    Li CY, Meng L, Liu B, Bao JK (2009) Galanthus nivalis agglutinin (GNA)-related lectins: traditional proteins, burgeoning drugs? Curr Chem Biol 3:324–333CrossRefGoogle Scholar
  9. 9.
    An J, Liu JZ, Wu CF, Li J, Dai L, van Damme E, Balzarini J, De Clercq E, Chen F, Bao JK (2006) Anti-HIV I/II activity and molecular cloning of a novel mannose/sialic acid-binding lectin from rhizome of Polygonatum cyrtonema Hua. Acta Biochim Biophys Sin (Shanghai) 38:70–78CrossRefGoogle Scholar
  10. 10.
    Tian Q, Wang W, Miao C, Peng H, Liu B, Leng FW, Dai L, Chen F, Bao JK (2008) Purification, characterization and molecular cloning of a novel mannose-binding lectin from rhizomes of Ophiopogon japonicus with antiviral and antifungal activities. Plant Sci 175:877–884CrossRefGoogle Scholar
  11. 11.
    Liu J, Stevens DJ, Haire LF, Walker PA, Coombs PJ, Russell RJ, Gamblin SJ, Skehel JJ (2009) Structures of receptor complexes formed by hemagglutinins from the Asian Influenza Pandemic of 1957. Proc Natl Acad Sci USA 106:17175–17180CrossRefGoogle Scholar
  12. 12.
    Gamblin SJ, Haire LF, Russell RJ, Stevens DJ, Xiao B, Ha Y, Vasisht N, Steinhauer DA, Daniels RS, Elliot A, Wiley DC, Skehel JJ (2004) The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303:1838–1842CrossRefGoogle Scholar
  13. 13.
    Lin T, Wang G, Li A, Zhang Q, Wu C, Zhang R, Cai Q, Song W, Yuen KY (2009) The hemagglutinin structure of an avian H1N1 influenza A virus. Virology 392:73–81CrossRefGoogle Scholar
  14. 14.
    Russell RJ, Stevens DJ, Haire LF, Gamblin SJ, Skehel JJ (2006) Avian and human receptor binding by hemagglutinins of influenza A viruses. Glycoconj J 23:85–92CrossRefGoogle Scholar
  15. 15.
    Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569CrossRefGoogle Scholar
  16. 16.
    Cohen J (2010) Swine flu pandemic. What’s old is new: 1918 virus matches 2009 H1N1 strain. Science 327:1563–1564CrossRefGoogle Scholar
  17. 17.
    Chandrasekaran A, Srinivasan A, Raman R, Viswanathan K, Raguram S, Tumpey TM, Sasisekharan V, Sasisekharan R (2008) Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat Biotechnol 26:107–113CrossRefGoogle Scholar
  18. 18.
    Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–410CrossRefGoogle Scholar
  19. 19.
    van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T (2007) Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol 171:1215–1223CrossRefGoogle Scholar
  20. 20.
    Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y (2006) Avian flu: influenza virus receptors in the human airway. Nature 440:435–436CrossRefGoogle Scholar
  21. 21.
    Nicholls JM, Bourne AJ, Chen H, Guan Y, Peiris JS (2007) Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses. Respir Res 8:73CrossRefGoogle Scholar
  22. 22.
    van Damme EJ, Nakamura-Tsuruta S, Smith DF, Ongenaert M, Winter HC, Rougé P, Goldstein IJ, Mo H, Kominami J, Culerrier R, Barre A, Hirabayashi J, Peumans WJ (2007) Phylogenetic and specificity studies of two-domain GNA-related lectins: generation of multispecificity through domain duplication and divergent evolution. Biochem J 404:51–61CrossRefGoogle Scholar
  23. 23.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  24. 24.
    de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34:W362–W365CrossRefGoogle Scholar
  25. 25.
    Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325CrossRefGoogle Scholar
  26. 26.
    Wright CS, Hester G (1996) The 2.0 A structure of a cross-linked complex between snowdrop lectin and a branched mannopentaose: evidence for two unique binding modes. Structure 4:1339–1352CrossRefGoogle Scholar
  27. 27.
    Lang PT, Brozell SR, Mukherjee S, Pettersen EF, Meng EC, Thomas V, Rizzo RC, Case DA, James TL, Kuntz ID (2009) DOCK 6: combining techniques to model RNA–small molecule complexes. RNA 15:1219–1230CrossRefGoogle Scholar
  28. 28.
    van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718CrossRefGoogle Scholar
  29. 29.
    van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, RP SW, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Hochschulverlag AG, Zurich, ISBN 3 7281 2422 2Google Scholar
  30. 30.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. Intermolecular Forces 11:331–342Google Scholar
  31. 31.
    Schüttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D 60:1355–1363CrossRefGoogle Scholar
  32. 32.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  33. 33.
    Essmann U, Perera L, Berkowitz ML (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8592CrossRefGoogle Scholar
  34. 34.
    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  35. 35.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3584–3590CrossRefGoogle Scholar
  36. 36.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  37. 37.
    Liu B, Peng H, Yao Q, Li J, Van Damme E, Balzarini J, Bao JK (2009) Bioinformatics analyses of the mannose-binding lectins from Polygonatum cyrtonema, Ophiopogon japonicus and Liparis noversa with antiproliferative and apoptosis-inducing activities. Phytomedicine 16:601–608CrossRefGoogle Scholar
  38. 38.
    Liu B, Xu XC, Cheng Y, Huang J, Liu YH, Liu Z, Min MW, Bian HJ, Chen J, Bao JK (2008) Apoptosis-inducing effect and structural basis of Polygonatum cyrtonema lectin and chemical modification properties on its mannose-binding sites. BMB Rep 41:369–375CrossRefGoogle Scholar
  39. 39.
    Ding J, Bao J, Zhu D, Zhang Y, Wang DC (2010) Crystal structures of a novel anti-HIV mannose-binding lectin from Polygonatum cyrtonema Hua with unique ligand-binding property and super-structure. J Struct Biol 171:309–317CrossRefGoogle Scholar
  40. 40.
    Okimoto N, Futatsugi N, Fuji H, Suenaga A, Morimoto G, Yanai R, Ohno Y, Narumi T, Taiji M (2009) High-performance drug discovery: computational screening by combining docking and molecular dynamics simulations. PLoS Comput Biol 5:e1000528CrossRefGoogle Scholar
  41. 41.
    Newhouse EI, Xu D, Markwick PR, Amaro RE, Pao HC, Wu KJ, Alam M, McCammon JA, Li WW (2009) Mechanism of glycan receptor recognition and specificity switch for avian, swine, and human adapted influenza virus hemagglutinins: a molecular dynamics perspective. J Am Chem Soc 131:17430–17442CrossRefGoogle Scholar
  42. 42.
    Alonso H, Bliznyuk AA, Gready JE (2006) Combining docking and molecular dynamic simulations in drug design. Med Res Rev 26:531–568CrossRefGoogle Scholar
  43. 43.
    Balzarini J (2006) Inhibition of HIV entry by carbohydrate-binding proteins. Antivir Res 71:237–247CrossRefGoogle Scholar
  44. 44.
    Balzarini J, Schols D, Neyts J, van Damme E, Peumans W, de Clercq E (1991) Alpha-(1–3)- and alpha-(1–6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro. Antimicrob Agents Chemother 35:410–416Google Scholar
  45. 45.
    Chand P, Bantia S, Kotian PL, El-Kattan Y, Lin TH, Babu YS (2005) Comparison of the anti-influenza virus activity of cyclopentane derivatives with oseltamivir and zanamivir in vivo. Bioorg Med Chem 13:4071–4077CrossRefGoogle Scholar
  46. 46.
    von Itzstein M (2007) The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov 6:967–974CrossRefGoogle Scholar
  47. 47.
    Yu K, Luo C, Qin G, Xu Z, Li N, Liu H, Shen X, Ma J, Wang Q, Yang C, Zhu W, Jiang H (2009) Why are oseltamivir and zanamivir effective against the newly emerged influenza A virus (A/H1N1)? Cell Res 19:1221–1224CrossRefGoogle Scholar
  48. 48.
    Wang CC, Chen JR, Tseng YC, Hsu CH, Hung YF, Chen SW, Chen CM, Khoo KH, Cheng TJ, Cheng YS, Jan JT, Wu CY, Ma C, Wong CH (2009) Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci USA 106:18137–18142CrossRefGoogle Scholar
  49. 49.
    Xu R, Ekiert DC, Krause JC, Hai R, Crowe JE Jr, Wilson IA (2010) Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science 328:357–360CrossRefGoogle Scholar
  50. 50.
    Shriver Z, Raman R, Viswanathan K, Sasisekharan R (2009) Context-specific target definition in influenza a virus hemagglutinin–glycan receptor interactions. Chem Biol 16:803–814CrossRefGoogle Scholar
  51. 51.
    Ludwig S, Planz O, Pleschka S, Wolff T (2003) Influenza-virus-induced signaling cascades: targets for antiviral therapy? Trends Mol Med 9:46–52CrossRefGoogle Scholar
  52. 52.
    Ludwig S, Planz O, Pleschka S, Wolff T (2008) Signaling to life and death: influenza viruses and intracellular signal transduction cascades. In: Klenk HD, Matrosovich MN, Stech J (eds) Avian influenza. Basel, Karger, pp 210–224CrossRefGoogle Scholar
  53. 53.
    Ludwig S (2009) Targeting cell signalling pathways to fight the flu: towards a paradigm change in anti-influenza therapy. J Antimicrob Chemother 64:1–4CrossRefGoogle Scholar
  54. 54.
    Ehrhardt C, Wolff T, Pleschka S, Planz O, Beermann W, Bode JG, Schmolke M, Ludwig S (2007) Influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses. J Virol 81:3058–3067CrossRefGoogle Scholar
  55. 55.
    Ehrhardt C, Ludwig S (2009) A new player in a deadly game: influenza viruses and the PI3K/Akt signalling pathway. Cell Microbiol 11:863–871CrossRefGoogle Scholar
  56. 56.
    Liu B, Wu JM, Li J, Liu JJ, Li WW, Li CY, Xu HL, Bao JK (2010) Polygonatum cyrtonema lectin induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras-Raf and PI3K-Akt signaling pathways. Biochimie 92:1934–1938CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Huai-long Xu
    • 1
  • Chun-yang Li
    • 1
  • Xue-mei He
    • 1
  • Ke-qin Niu
    • 1
  • Hao Peng
    • 1
  • Wen-wen Li
    • 1
  • Cheng-cheng Zhou
    • 1
  • Jin-ku Bao
    • 1
    Email author
  1. 1.School of Life SciencesSichuan UniversityChengduChina

Personalised recommendations